Feasibility Assessment of the Integration of Microfluidics and NEPCM for Cooling Microelectronics Systems

Author(s):  
Julaunica Tigner ◽  
Tamara Floyd-Smith

The growing demand for microelectronic systems to be smaller and faster has increased the energy released by these devices in the form of heat. Microelectronic systems such as laptop computers and hand held devices are not exempted from these demands. The primary traditional technologies currently used to remove heat generated in these devices are fins and fans. In this study, traditional methods were compared to more novel methods like cooling using forced convection in microfluidic channels and stagnant nanoparticle enhanced phase change materials (NEPCM). For this study, the difference between the surface temperature of a simulated microelectronic system without any cooling and with a particular cooling method was compared for several cooling scenarios. Higher ΔT values indicate more effective cooling. The average ΔT values for fans, fins, NEPCM and microchannels with water were 2°C, 5°C, 3°C and 4°C respectively. These results suggest that, separately, microchannel cooling and NEPCM are promising methods for managing heat in microelectronic systems. Even more interesting than NEPCM or microchannel cooling alone is the potential cooling that can be achieved by combining the two methods to achieve multimode cooling first by the phase change of the NEPCM and then by circulating the nanofluid (melted NEPCM) through microchannels. A feasibility assessment, however, reveals that the combination of the two methods is not equal to the sum of the parts due to the viscosity and associated pumping power requirements for the melted phase change material. Nonetheless, the combination of the method still holds promise as a competitive alternative to existing thermal management solutions.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
S. K. Saha ◽  
K. Srinivasan ◽  
P. Dutta

This paper deals with phase change material (PCM), used in conjunction with thermal conductivity enhancer (TCE), as a means of thermal management of electronic systems. Eicosane is used as PCM, while aluminium pin or plate fins are used as TCE. The test section considered in all cases is a 42×42mm2 base with a TCE height of 25mm. An electrical heater at the heat sink base is used to simulate the heat generation in electronic chips. Various volumetric fractions of TCE in the conglomerate of PCM and TCE are considered. The case with 8% TCE volume fraction was found to have the best thermal performance. With this volume fraction of TCE, the effects of fin dimension and fin shape are also investigated. It is found that a large number of small cross-sectional area fins is preferable. A numerical model is also developed to enable an interpretation of experimental results.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Collier S. Miers ◽  
Amy Marconnet

Abstract Phase change materials (PCMs) are effective at storing thermal energy and are attractive for use in electronics to smooth temperature peaks during periods of high demand; however, the use of PCMs has been somewhat limited due to the poor thermal properties of the materials. Here, we propose a design for a tunable composite PCM heat sink for passive thermal management in electronic systems and develop an improved test platform to directly compare performance between different designs and PCMs. The composite design leverages high conductivity pathways, which are machined into aluminum heat sinks, and back-filled with PCMs. Two package sizes are considered with several internal fin structures. All designs are evaluated using a test platform with realistic power profiles, controlled interfacial loading, and in situ temperature measurement. The composite PCM heat sinks are benchmarked against solid aluminum packages of the same size. This study focuses on three commercially available PCMs. Performance is evaluated based on (1) the time it takes the test heater chip below each composite PCM package to reach the cut-off temperature of 95 °C and (2) the period of a full melt-regeneration cycle. A range of heat fluxes are considered in this study spanning 6.8–14.5 W cm−2. The isokite design with PlusICE S70 extends the time to reach 95 °C by 36.2% when compared to the solid package, while weighing 17.3% less, making it advantageous for mobile devices.


Author(s):  
Omar Sanusi ◽  
Randy D. Weinstein ◽  
Amy S. Fleischer

Phase Change Materials (PCMs) are used for thermal management and are ideal for cyclic operations due to their high capacity to store heat. Most PCMs do not exhibit sufficient conductivity to be effective at larger sizes. Enhancing conductivity can be done in a number of ways including carbon foam. It is not widely known how well PCMs penetrate inside the carbon foam structure. Initial research suggests that the carbon foam-PCM matrix acts more as a conductor than a thermal storage device. Through the use microscopy, we will examine how the well the PCM penetrates into the carbon foam. We will also use experimental data comparing carbon foam enhanced modules to pure PCM modules. A volume displacement test will also be used to determine the quantity of PCM that enters into the carbon foam structure. This knowledge will allow better design of enhanced PCM modules and will determine if carbon foam is indeed a viable conduction enhancer for PCM thermal management.


2015 ◽  
Vol 749 ◽  
pp. 415-419
Author(s):  
Zbyšek Pavlík ◽  
Anton Trník ◽  
Milena Pavlíková ◽  
Jan Fořt ◽  
Robert Černý

A Phase Change Material (PCM) based on paraffinic wax encapsulated in polymer shell is used for improvement of the heat storage capacity of commercially produced dry plaster, originally developed for both exterior and interior hand application. The composition of PCM modified plasters is designed with respect to the workability of fresh mixtures. Characterization of applied PCM is done using the measurement of particle size distribution, powder density, and matrix density. For the newly developed composite plasters, basic physical properties, mechanical properties, and thermal properties are accessed, whereas a specific attention is paid to the Difference Scanning Calorimetry (DSC) analysis. Using DSC measurement, temperatures of phase change transitions and phase changes enthalpies are identified. The obtained results show that the temperature induced phase change can be used for the release and storage of thermal energy in buildings, which can be beneficially utilized for saving the energy spent for the achievement of the indoor thermal comfort.


2018 ◽  
Vol 67 ◽  
pp. 03034
Author(s):  
Muhammad Amin ◽  
Bambang Ariantara ◽  
Nandy Putra ◽  
Adjie Fahrizal Sandi ◽  
Nasruddin A. Abdullah

The performance of an electric vehicle depends on the battery used. While, in the operation of an electric vehicle, batteries experience a quick heating especially at the beginning of charging and could cause a fire. Therefore, the solution could be proposed is by employing heat pipe and Phase Change Material (PCM) for cooling of battery. The heat pipe serves to transfer the battery’s heat energy. In other hands, PCM functions as a heat sink when the battery runs, so its performance will stable and extend the lifespan. This study aimed to evaluate the performance of electric vehicle batteries at a temperature of 50°C using the combination of heat pipe and PCM. The ‘L’ type of heat pipe and beeswax PCM were assembled as cooling device. In addition, a battery simulator was employed as a test instrument by varying the heat load of 20, 30, 40, and 50 W. The experiments were successfully conducted, and the results showed that the addition of heat pipe and PCM could keep the surface temperature of battery below 50°C, at heat load of 20 - 50 W. Heat pipe and PCM for battery’s cooling system, can reduce the battery surface temperature significantly and can be proposed as an alternative system for cooling battery.


2020 ◽  
Vol 10 (20) ◽  
pp. 7354
Author(s):  
Mingyi Chen ◽  
Siyu Zhang ◽  
Guoyang Wang ◽  
Jingwen Weng ◽  
Dongxu Ouyang ◽  
...  

Temperature is an important factor affecting the working efficiency and service life of lithium-ion battery (LIB). This study carried out the experiments on the thermal performances of Sanyo ternary and Sony LiFePO4 batteries under different working conditions including extreme conditions, natural convection cooling and phase change material (PCM) cooling. The results showed that PCM could absorb some heat during the charging and discharging process, effectively reduce the temperature and keep the capacity stable. The average highest temperature of Sanyo LIB under PCM cooling was about 54.4 °C and decreased about 12.3 °C compared with natural convection in the 2 C charging and discharging cycles. It was found that the addition of heat dissipation fins could reduce the surface temperature, but the effect was not obvious. In addition, the charge and discharge cycles of the two kinds of LIBs were compared at the discharge rates of 1 C and 2 C. Compared with natural convection cooling, the highest temperature of Sanyo LIB with PCM cooling decreased about 4.7 °C and 12.8 °C for 1 C and 2 C discharging respectively, and the temperature of Sony LIB highest decreased about 1.1 °C and 2 °C.


1999 ◽  
Author(s):  
Linda J. Hayes ◽  
Michael A. Spieker ◽  
Eugene H. Wissler ◽  
David P. Colvin

Abstract One of the emerging technologies of this decade is macroencapsulated phase change materials (PCM), which is being developed to provide significantly enhanced thermal management for coolants, textile fibers, foams, composites and coatings with applications to avionics, spacesuits, machine coolants, apparel, packaging, and agriculture (Kaska and Chen, 1985, Colvin and Mulligan 1989). The encapsulated PCM is embedded or suspended in a conductive media. The characteristics of the capsules, the phase change material and the conductive media can be designed so as to provide enhanced thermal management in a wide variety of applications. The traditional way to model this system is to take a macroscopic view of the entire system, to use a volume averaged value for the release of latent heat from the PCM and to incorporate this term into the standard heat conduction equation. We propose a simplified model which has its origins in flow in porous media. The system is modeled with two components, the underlying conductive material and the phase change capsules. The amount of latent heat released from the PCM capsules is determined by the local temperature in the capsules, which can differ from the temperature in the conducting media. This model closely represents the physical systems which are being modeled Numerical results using this model are compared to experimental data from a garment layer which is constructed using macroencapsulated PCM capsules.


Sign in / Sign up

Export Citation Format

Share Document