Effect of Temperature on Rheology and Nanoparticle Movements of Water Based Nanofluids by Molecular Dynamics Simulation

Author(s):  
Wenzheng Cui ◽  
Zhaojie Shen ◽  
Jianguo Yang ◽  
Shaohua Wu

Employing nanofluids is an innovative way to enhance heat transfer in cooling system of internal combustion engine. the reasons for the significantly enhanced heat transfer properties of nanofluids are various. On one hand, the markedly increased thermal conductivity is the most apparent reason; on the other hand, the changed rheology properties of base fluid due to the disordered movements of countless nanoparticles is even more important. Because the size scale of nanoparticles is too small, in some cases of computational simulations nanofluids is simplified as single-phase fluids. However, the influence of nanoparticles for flow behaviors of base fluids distinctly should not be ignored. By means of molecular dynamics method, a nano-scale simulation on the rheology of nanofluids could be conducted, therefore the movements of nanoparticles could be directly observed, which is conducive to reveal the influence of movements of nanoparticles for rheology of nanofluids. The present work is intended to perform a molecular dynamic simulation on the rheology of water based nanofluids. By applying temperature difference, the velocity and temperature distribution of fluid zone are calculated to evaluate heat transfer through nanofluids. Moreover, the influence of temperature for the movements of nanoparticle is discussed.

2021 ◽  
Vol 408 ◽  
pp. 119-128
Author(s):  
Md Yeashir Arafat ◽  
Shashwata Chakraborty

The thermophysical properties as well as the thermal performance of a nanofluid can be altered upon varying the nanoparticle type and/or nanoparticle volume concentration. Herein, the effects of variable nanoparticle concentration on water-based TiO2, SiO2, TiC, and SiC nanofluids have been studied analytically. The dispersion effects of 1-4% nanoparticle on the single-phase forced convection heat transfer performance of the nanofluids have been investigated. The effective thermophysical properties of the nanofluids are determined adopting the general correlations. The flow velocities of the nanofluids relative to their base fluids are assumed to be constant. Mouromtseff number has been employed as a convenient figure of merit to compare the nanofluids under fully developed internal laminar and turbulent flow conditions. The results indicate an increase in effective density, thermal conductivity, and dynamic viscosity of the nanofluids. Nanofluids containing carbide suspensions exhibit superior heat transfer properties compared to those having oxide suspensions.


Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is one of the critical issues in successfully using graphite in the fusion environment. In this work, we use molecular dynamics method to simulate the sputtering by using the LAMMPS. Calculation results show that the peak values of the sputtering yield are located between 25 eV to 50 eV. After the energy of 25 eV, the higher incident energy cause the lower carbon sputtering yield. The temperature which is most likely to sputter is about 800 K for hydrogen, deuterium and tritium. Before the 800 K, the sputtering rates increase when the temperature increase. After the 800 K, they decrease with the temperature increase. Under the same temperature and energy, the sputtering rate of tritium is bigger than that of deuterium, the sputtering rate of deuterium is bigger than that of hydrogen.


2021 ◽  
Vol 12 (6) ◽  
pp. 7239-7248

The novel coronavirus, recognized as COVID-19, is the cause of an infection outbreak in December 2019. The effect of temperature and pH changes on the main protease of SARS-CoV-2 were investigated using all-atom molecular dynamics simulation. The obtained results from the root mean square deviation (RMSD) and root mean square fluctuations (RMSF) analyses showed that at a constant temperature of 25℃ and pH=5, the conformational change of the main protease is more significant than that of pH=6 and 7. Also, by increasing temperature from 25℃ to 55℃ at constant pH=7, a remarkable change in protein structure was observed. The radial probability of water molecules around the main protease was decreased by increasing temperature and decreasing pH. The weakening of the binding energy between the main protease and water molecules due to the increasing temperature and decreasing pH has reduced the number of hydrogen bonds between the main protease and water molecules. Finding conditions that alter the conformation of the main protease could be fundamental because this change could affect the virus’s functionality and its ability to impose illness.


2016 ◽  
Vol 18 (26) ◽  
pp. 17461-17469 ◽  
Author(s):  
Z. Y. Hou ◽  
K. J. Dong ◽  
Z. A. Tian ◽  
R. S. Liu ◽  
Z. Wang ◽  
...  

The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method.


Author(s):  
Mohsen Motamedi ◽  
AH Naghdi ◽  
SK Jalali

Composite materials have become popular because of high mechanical properties and lightweight. Aluminum/carbon nanotube is one of the most important metal composite. In this research, mechanical properties of aluminum/carbon nanotube composite were obtained using molecular dynamics simulation. Then, effect of temperature on stress–strain curve of composite was studied. The results showed by increasing temperature, the Young’s modulus of composite was decreased. More specifically increasing the temperature from 150 K to 620 K, decrease the Young’s modulus to 11.7%. The ultimate stress of composite also decreased by increasing the temperature. A continuum model of composite was presented using finite element method. The results showed the role of carbon nanotube on strengthening of composite.


Sign in / Sign up

Export Citation Format

Share Document