Consideration of Manufacturing Processes and the Supply Chain in Product Design

Author(s):  
Ahmed J. Alsaffar ◽  
Karl R. Haapala ◽  
Zhaohui Wu

As efforts continue to incorporate environmental sustainability into product design, struggles persist to concurrently consider the environmental impacts resulting from transportation planning and supply chain network design. In fact, the transportation sector is the second largest contributor to direct greenhouse gas (GHG) emissions in the United States, following electricity generation. To address these concerns and consider environmental issues more holistically during the development of products, Design for X (X: manufacturing, environment, etc.) methods, such as environmentally benign manufacturing (EBM) and life cycle assessment (LCA) continue to be advanced through research. In spite of improving environmental performance through design, supply chain related impacts are not well understood and can be impacted by decisions made during product design. Thus, the aim of this research is to explore how changes to the design of a product affect manufacturing supply chain configurations and, in turn, influence product environmental sustainability. The environmental impacts for producing several three-ring binder design variations are predicted by assuming a given set of suppliers that provide materials and components to the manufacturer. Supply chain transportation impacts are also accounted for in the analysis. Transportation impacts are found to be minor compared to materials and manufacturing impacts.

2017 ◽  
Vol 114 (38) ◽  
pp. E7891-E7899 ◽  
Author(s):  
Timothy M. Smith ◽  
Andrew L. Goodkind ◽  
Taegon Kim ◽  
Rylie E. O. Pelton ◽  
Kyo Suh ◽  
...  

Corn production, and its associated inputs, is a relatively large source of greenhouse gas emissions and uses significant amounts of water and land, thus contributing to climate change, fossil fuel depletion, local air pollutants, and local water scarcity. As large consumers of this corn, corporations in the ethanol and animal protein industries are increasingly assessing and reporting sustainability impacts across their supply chains to identify, prioritize, and communicate sustainability risks and opportunities material to their operations. In doing so, many have discovered that the direct impacts of their owned operations are dwarfed by those upstream in the supply chain, requiring transparency and knowledge about environmental impacts along the supply chains. Life cycle assessments (LCAs) have been used to identify hotspots of environmental impacts at national levels, yet these provide little subnational information necessary for guiding firms’ specific supply networks. In this paper, our Food System Supply-Chain Sustainability (FoodS3) model connects spatial, firm-specific demand of corn purchasers with upstream corn production in the United States through a cost minimization transport model. This provides a means to link county-level corn production in the United States to firm-specific demand locations associated with downstream processing facilities. Our model substantially improves current LCA assessment efforts that are confined to broad national or state level impacts. In drilling down to subnational levels of environmental impacts that occur over heterogeneous areas and aggregating these landscape impacts by specific supply networks, targeted opportunities for improvements to the sustainability performance of supply chains are identified.


2020 ◽  
Vol 12 (4) ◽  
pp. 1586 ◽  
Author(s):  
Daesoo Kim ◽  
Ranjan Parajuli ◽  
Gregory J. Thoma

A tiered hybrid input–output-based life cycle assessment (LCA) was conducted to analyze potential environmental impacts associated with current US food consumption patterns and the recommended USDA food consumption patterns. The greenhouse gas emissions (GHGEs) in the current consumption pattern (CFP 2547 kcal) and the USDA recommended food consumption pattern (RFP 2000 kcal) were 8.80 and 9.61 tons CO2-eq per household per year, respectively. Unlike adopting a vegetarian diet (i.e., RFP 2000 kcal veg or RFP 2600 kcal veg), adoption of a RFP 2000 kcal diet has a probability of increasing GHGEs and other environmental impacts under iso-caloric analysis. The bigger environmental impacts of non-vegetarian RFP scenarios were largely attributable to supply chain activities and food losses at retail and consumer levels. However, the RFP 2000 vegetarian diet showed a significant reduction in the environmental impacts (e.g., GHGEs were 22% lower than CFP 2547). Uncertainty analysis confirmed that the RFP 2600 scenario (mean of 11.2; range 10.3–12.4 tons CO2-eq per household per year) is higher than CFP 2547 (mean of 8.81; range 7.89–9.95 tons CO2-eq per household per year) with 95% confidence. The outcomes highlight the importance of incorporating environmental sustainability into dietary guidelines through the entire life cycle of the food system with a full accounting of the effects of food loss/waste.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6554
Author(s):  
Diana Goettsch ◽  
Krystel K. Castillo-Villar ◽  
Maria Aranguren

Coal is the second-largest source for electricity generation in the United States. However, the burning of coal produces dangerous gas emissions, such as carbon dioxide and Green House Gas (GHG) emissions. One alternative to decrease these emissions is biomass co-firing. To establish biomass as a viable option, the optimization of the biomass supply chain (BSC) is essential. Although most of the research conducted has focused on optimization models, the purpose of this paper is to incorporate machine-learning (ML) algorithms into a stochastic Mixed-Integer Linear Programming (MILP) model to select potential storage depot locations and improve the solution in two ways: by decreasing the total cost of the BSC and the computational burden. We consider the level of moisture and level of ash in the biomass from each parcel location, the average expected biomass yield, and the distance from each parcel to the closest power plant. The training labels (whether a potential depot location is beneficial or not) are obtained through the stochastic MILP model. Multiple ML algorithms are applied to a case study in the northeast area of the United States: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Multi-Layer Perceptron (MLP) Neural Network. After applying the hybrid methodology combining ML and optimization, it is found that the MLP outperforms the other algorithms in terms of selecting potential depots that decrease the total cost of the BSC and the computational burden of the stochastic MILP model. The LR and the DT also perform well in terms of decreasing total cost.


2021 ◽  
Vol 13 (11) ◽  
pp. 5933
Author(s):  
Saoli Chanda ◽  
Mahadev Bhat ◽  
Kateel G. Shetty ◽  
Krishnaswamy Jayachandran

Tomato (Solanum lycopersicum L.) is an important vegetable crop in Florida, a state located in the south-eastern region of the United States. The state is the second largest producer of tomatoes in the country and contributes to almost 90% of the domestic winter tomato supplies. However, tomato farmers in Florida have come under increasing pressure due to climate changes, foreign imports, and rising production costs. The purpose of this paper is to analyze whether Florida tomato growers will continue to sustain their production given the seasonal and geographic production advantage, yet against various internal and external threats emerging throughout the fresh produce supply chain. We developed our study on a multi-disciplinary conceptual model of network (supply chain) relationship and primary and secondary data gathered from various stakeholders and the literature. We found that Florida farmers have done remarkably well by adapting to warming temperatures and changing consumer expectations about environmental sustainability and responsible labor practices. However, foreign competition, labor shortage, the rising costs of inputs, extreme weather events (hurricanes), and pests and diseases due to humid climate continue to affect the sustainability of the Florida tomato production. Our paper suggests various farm-, market-, and institution-level adaptation mechanisms for preventing the regional production advantage of the Florida tomato industry from eroding. Newer immigration laws are necessary for easing the labor situation. In order to have a level playing field with respect to the use of protected agriculture technology such as in Mexico and Canada, U.S. farmers in general and Florida farmers in particular need government support. Florida farmers need to diversify their fresh produce market strategies, finding new product streams. There is also a need for reforming the product certification landscape, which some growers find cumbersome and cost prohibitive. Growers may gain from being better able to convey to consumers the information regarding their effort put into environmental sustainability, workers welfare, and safe food.


Author(s):  
Harish K. Jeswani ◽  
Andrew Chilvers ◽  
Adisa Azapagic

Biofuels are being promoted as a low-carbon alternative to fossil fuels as they could help to reduce greenhouse gas (GHG) emissions and the related climate change impact from transport. However, there are also concerns that their wider deployment could lead to unintended environmental consequences. Numerous life cycle assessment (LCA) studies have considered the climate change and other environmental impacts of biofuels. However, their findings are often conflicting, with a wide variation in the estimates. Thus, the aim of this paper is to review and analyse the latest available evidence to provide a greater clarity and understanding of the environmental impacts of different liquid biofuels. It is evident from the review that the outcomes of LCA studies are highly situational and dependent on many factors, including the type of feedstock, production routes, data variations and methodological choices. Despite this, the existing evidence suggests that, if no land-use change (LUC) is involved, first-generation biofuels can—on average—have lower GHG emissions than fossil fuels, but the reductions for most feedstocks are insufficient to meet the GHG savings required by the EU Renewable Energy Directive (RED). However, second-generation biofuels have, in general, a greater potential to reduce the emissions, provided there is no LUC. Third-generation biofuels do not represent a feasible option at present state of development as their GHG emissions are higher than those from fossil fuels. As also discussed in the paper, several studies show that reductions in GHG emissions from biofuels are achieved at the expense of other impacts, such as acidification, eutrophication, water footprint and biodiversity loss. The paper also investigates the key methodological aspects and sources of uncertainty in the LCA of biofuels and provides recommendations to address these issues.


Author(s):  
Jung-Yull Shin ◽  
Gun-Woo Kim ◽  
Janet S. Zepernick ◽  
Kyu-Young Kang

In 2016, the global environmental impact of greenhouse gas (GHG) emissions was 49.3 gigatons in CO2equivalent. Worldwide, the transportation sector is responsible for 14% of GHG. Electric vehicles powered by less-polluting energy sources are one way to reduce the environmental impact of the transportation sector, but immediate transportation demands cannot be met by existing electric vehicle technology. Use of less polluting biofuel in place of petroleum-based gasoline or diesel fuel to power the existing transportation fleet is a widely accepted transitional solution, including in the Republic of Korea. The purpose of this project is to investigate approaches to biofuels in the US and the UK to evaluate Korea’s current energy policies related to use of biofuels and to make recommendations for strengthening Korea’s energy policy. This project addresses only policies for use of biodiesel rather than ethanol (widely used in the US) because ethanol is not used in Korea. This research shows that Korea calculates GHG using the principle that biofuel is carbon neutral, but energy policies in the US and the UK treat biofuel as not entirely carbon neutral. Korea should examine how to calculate GHG from biodiesel according to the standard set by the UK. In detail, the project’s findings relate to environmental sustainability.


Author(s):  
Eduardo do Carmo Marques ◽  
Vanessa Guimarães ◽  
Maxwel De Azevedo-Ferreira ◽  
Ronney Mancebo Boloy

In the search of sustainable process and products, ecofriendly policies have been developed over the years, aiming at reducing the environmental impacts as a step toward sustainability. Among the environmental impacts, alternatives to mitigate the greenhouse gas emissions - GHG stand out due to the concerns with climate change. Then, the development and use of renewable resources become relevant. Considering that supply chains are intense in energy consumption and GHG emissions (since involves processes related to supply, production, transport, consumption), it becomes relevant to investigate if the management of sustainable supply chain are considering the renewable energies in their processes. Therefore, this paper aims at mapping the role of renewable energies in the context of sustainable supply chain, analyzing the literature published at Web of Science database - WoS about the subject. The main researchers, organizations, collaboration networks were presented, and the 21 most cited studies were mapped in this paper. The research was carried out with the papers published at WoS until 2019, using VantagePoint software to handle information. The findings show that the research about renewable energy in the context of sustainable supply chain has been growing, especially since 2010. Moreover, biomass, biofuels and photovoltaic energy were the most recurrent sources of renewable energy studied by most cited papers. However, the theme presented itself as new and that there are still potential to be explored.


2016 ◽  
Vol 35 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Anna Karin Bernstad ◽  
Alba Cánovas ◽  
Rogerio Valle

In recent years, increased light has been shed on the large amounts of food wasted along the food supply chain (FSC). As lifecycle assessments (LCAs) are commonly used for estimations of environmental impacts from food production, it is relevant to investigate and discuss how such wastage is reflected in foodstuff LCAs. The objective of the present paper is to review a larger set of LCAs of foodstuff in order to (1) investigate if and how wastage along the FSC is addressed and (2) explore the importance of including wastage accumulated along the FSC in terms of environmental impacts. Twenty-eight LCA case studies and two review papers, focusing on tomatoes, were reviewed and greenhouse gas (GHG) emissions chosen as indicator for the second objective. Only one third of the studies consider wastage at some part of the supply chain, in many cases in an inconsistent manner, and only in nine cases were GHG emissions from wastage included in overall systems GHG emissions. In these, wastage accounts for between 2 and 33% of total contribution to climate change. Omitting wastage when conducting LCA of foodstuff could result in underestimations of environmental impacts. Occurrence of wastage along all phases of the supply chain should be acknowledged in order to estimate environmental benefits from prevention and to identify areas where strategies with the aim of reducing wastage could be most efficient.


2019 ◽  
Vol 97 (9) ◽  
pp. 4010-4020 ◽  
Author(s):  
Claire B Gleason ◽  
Robin R White

Abstract The increasing global population, limited resource availability, and global focus on reducing greenhouse gas (GHG) emissions put pressure on animal agriculture industries to critically evaluate and optimize the role they play in a sustainable food production system. The objective of this review is to summarize evidence of the various roles that the U.S. beef industry plays in the U.S. and global agricultural systems. As the world’s largest beef producer, the United States reaps considerable economic benefit from the beef industry through strong domestic and international demand, as well as employment opportunities for many Americans. Beef production contributes to GHG emissions, land use, and water use, among other critical environmental impacts but provides an important source of essential micronutrients for human consumption. The U.S. beef industry provides sufficient product to meet the protein, vitamin B12, omega-3 and -6 fatty acid requirements of 43, 137, 47, and 487 million people, respectively. In the United States, beef production was estimated to account for 53% of GHG emissions from U.S. animal agriculture and 25% of GHG emissions from all of U.S. agriculture. Footprinting studies suggest that much of the land use and water use associated with beef production are attributed to the development of feed crops or pastureland. On a global scale, beef from U.S. origin is exported to numerous developed and developing countries, representing an important international nutrient routing. Along with other prominent beef-producing nations, the United States continues to pursue a greater level of sustainability in its cattle industry, which will bear important implications for future global food security. Efforts to reduce the environmental impacts of beef production will likely be the strongest drivers of enhanced sustainability.


Sign in / Sign up

Export Citation Format

Share Document