A Broad Transfer Learning Algorithm for Classification of Bearing Faults

Author(s):  
Guokai Liu ◽  
Liang Gao ◽  
Weiming Shen ◽  
Andrew Kusiak

Abstract Condition monitoring and fault diagnosis are of great interest to the manufacturing industry. Deep learning algorithms have shown promising results in equipment prognostics and health management. However, their success has been hindered by excessive training time. In addition, deep learning algorithms face the domain adaptation dilemma encountered in dynamic application environments. The emerging concept of broad learning addresses the training time and the domain adaptation issue. In this paper, a broad transfer learning algorithm is proposed for the classification of bearing faults. Data of the same frequency is used to construct one- and two-dimensional training data sets to analyze performance of the broad transfer and deep learning algorithms. A broad learning algorithm contains two main layers, an augmented feature layer and a classification layer. The broad learning algorithm with a sparse auto-encoder is employed to extract features. The optimal solution of a redefined cost function with a limited sample size to ten per class in the target domain offers the classifier of broad learning domain adaptation capability. The effectiveness of the proposed algorithm has been demonstrated on a benchmark dataset. Computational experiments have demonstrated superior efficiency and accuracy of the proposed algorithm over the deep learning algorithms tested.

2021 ◽  
Vol 2070 (1) ◽  
pp. 012141
Author(s):  
Pavan Sharma ◽  
Hemant Amhia ◽  
Sunil Datt Sharma

Abstract Nowadays, artificial intelligence techniques are getting popular in modern industry to diagnose the rolling bearing faults (RBFs). The RBFs occur in rotating machinery and these are common in every manufacturing industry. The diagnosis of the RBFs is highly needed to reduce the financial and production losses. Therefore, various artificial intelligence techniques such as machine and deep learning have been developed to diagnose the RBFs in the rotating machines. But, the performance of these techniques has suffered due the size of the dataset. Because, Machine learning and deep learning methods based methods are suitable for the small and large datasets respectively. Deep learning methods have also been limited to large training time. In this paper, performance of the different pre-trained models for the RBFs classification has been analysed. CWRU Dataset has been used for the performance comparison.


Author(s):  
Rafly Indra Kurnia ◽  
◽  
Abba Suganda Girsang

This study will classify the text based on the rating of the provider application on the Google Play Store. This research is classification of user comments using Word2vec and the deep learning algorithm in this case is Long Short Term Memory (LSTM) based on the rating given with a rating scale of 1-5 with a detailed rating 1 is the lowest and rating 5 is the highest data and a rating scale of 1-3 with a detailed rating, 1 as a negative is a combination of ratings 1 and 2, rating 2 as a neutral is rating 3, and rating 3 as a positive is a combination of ratings 4 and 5 to get sentiment from users using SMOTE oversampling to handle the imbalance data. The data used are 16369 data. The training data and the testing data will be taken from user comments MyTelkomsel’s application from the play.google.com site where each comment has a rating in Indonesian Language. This review data will be very useful for companies to make business decisions. This data can be obtained from social media, but social media does not provide a rating feature for every user comment. This research goal is that data from social media such as Twitter or Facebook can also quickly find out the total of the user satisfaction based from the rating from the comment given. The best f1 scores and precisions obtained using 5 classes with LSTM and SMOTE were 0.62 and 0.70 and the best f1 scores and precisions obtained using 3 classes with LSTM and SMOTE were 0.86 and 0.87


2021 ◽  
Vol 11 (16) ◽  
pp. 7188
Author(s):  
Tieming Chen ◽  
Yunpeng Chen ◽  
Mingqi Lv ◽  
Gongxun He ◽  
Tiantian Zhu ◽  
...  

Malicious HTTP traffic detection plays an important role in web application security. Most existing work applies machine learning and deep learning techniques to build the malicious HTTP traffic detection model. However, they still suffer from the problems of huge training data collection cost and low cross-dataset generalization ability. Aiming at these problems, this paper proposes DeepPTSD, a deep learning method for payload based malicious HTTP traffic detection. First, it treats the malicious HTTP traffic detection as a text classification problem and trains the initial detection model using TextCNN on a public dataset, and then adapts the initial detection model to the target dataset based on a transfer learning algorithm. Second, in the transfer learning procedure, it uses a semi-supervised learning algorithm to accomplish the model adaptation task. The semi-supervised learning algorithm enhances the target dataset based on a HTTP payload data augmentation mechanism to exploit both the labeled and unlabeled data. We evaluate DeepPTSD on two real HTTP traffic datasets. The results show that DeepPTSD has competitive performance under the small data condition.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850022
Author(s):  
Karl R. Weiss ◽  
Taghi M. Khoshkoftaar

A transfer learning environment is characterized by not having sufficient labeled training data from the domain of interest (target domain) to build a high-performing machine learner. Transfer learning algorithms use labeled data from an alternate domain (source domain), that is similar to the target domain, to build high-performing learners. The design of a transfer learning algorithm is typically comprised of a domain adaptation step following by a learning step. The domain adaptation step attempts to align the distribution differences between the source domain and the target domain. Then, the aligned data from the domain adaptation step is used in the learning step, which is typically implemented with a traditional machine learning algorithm. Our research studies the impact of the learning step on the performance of various transfer learning algorithms. In our experiment, we use five unique domain adaptation methods coupled with seven different traditional machine learning methods to create 35 different transfer learning algorithms. We perform comparative performance analyses of the 35 transfer learning algorithms, along with the seven stand-alone traditional machine learning methods. This research will aid machine learning practitioners in the algorithm selection process for a transfer learning environment in the absence of reliable validation techniques.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lokesh Singh ◽  
Rekh Ram Janghel ◽  
Satya Prakash Sahu

PurposeThe study aims to cope with the problems confronted in the skin lesion datasets with less training data toward the classification of melanoma. The vital, challenging issue is the insufficiency of training data that occurred while classifying the lesions as melanoma and non-melanoma.Design/methodology/approachIn this work, a transfer learning (TL) framework Transfer Constituent Support Vector Machine (TrCSVM) is designed for melanoma classification based on feature-based domain adaptation (FBDA) leveraging the support vector machine (SVM) and Transfer AdaBoost (TrAdaBoost). The working of the framework is twofold: at first, SVM is utilized for domain adaptation for learning much transferrable representation between source and target domain. In the first phase, for homogeneous domain adaptation, it augments features by transforming the data from source and target (different but related) domains in a shared-subspace. In the second phase, for heterogeneous domain adaptation, it leverages knowledge by augmenting features from source to target (different and not related) domains to a shared-subspace. Second, TrAdaBoost is utilized to adjust the weights of wrongly classified data in the newly generated source and target datasets.FindingsThe experimental results empirically prove the superiority of TrCSVM than the state-of-the-art TL methods on less-sized datasets with an accuracy of 98.82%.Originality/valueExperiments are conducted on six skin lesion datasets and performance is compared based on accuracy, precision, sensitivity, and specificity. The effectiveness of TrCSVM is evaluated on ten other datasets towards testing its generalizing behavior. Its performance is also compared with two existing TL frameworks (TrResampling, TrAdaBoost) for the classification of melanoma.


Author(s):  
Darya Filatova ◽  
Charles El-Nouty ◽  
Uladzislau Punko

The work is devoted to the development of a high-performance deep learning algorithm related to the diagnosis and classification of defects of water-repellent membranes. The mechanism of constructing visual models of the membrane surface is discussed. This allows to get the representative training data set. The proposed methodology consists in the sequent transformations of pixel-image intensities to find defected fragments on the membrane's surface. The computational algorithm is based on the architecture of convolution neural networks. To assess its effectiveness, the "confidence of confidence" criterion is proposed. The presented computations show that the methodology can be successfully applied in material sciences, for example, to study the properties of building materials, or in forensic science when examining the causes of construction catastrophes.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document