APC Retrofits and Technologies Lower Emissions and Optimize WTE Production

Author(s):  
Robin Linton

Air pollution control (APC) systems in waste-to-energy (WTE) plants are facing many of the same challenges that independent power facilities (IPP) have dealt with for years. The most prevalent problems being corrosion and emissions. An IPP plant in the southeastern U.S. illustrates the cause and effect that corrosion played in the plant’s operation, as well as the engineered solution designed to address the issue. The result has performed beyond expectations and lends itself well to the same issues in the WTE plants. The paper also provides information regarding the conversion of the electrostatic precipitator (ESP) to a fabric filter baghouse. By utilizing the existing housing of an ESP, a higher particulate collection efficiency can be achieved at a fraction of the capital cost. Finally, the paper discusses filter changeout to filter bags laminated with highly efficient expanded polytetrafluoroethylene (ePTFE) membrane. This media change addresses the demanding environmental regulations the industry faces, as well as providing benefits to the WTE APC system such as superior cleandown, increased airflows, and extended filter life. The ultimate results of these three technologies can help decrease maintenance time and cost and increase WTE facility production.

Author(s):  
Rob C. Rivers ◽  
Nenad Knezev

Abstract Public private partnership has played a mayor role in development and successful operation of the current KMS Peel Waste-to-Energy Plant located in Peel Region, Ontario. On December 10, 1998 KMS Peel Inc. and the Region of Peel entered into an agreement to expand the waste-to-energy facility by 36,000 tonnes (one additional incineration unit). Due to expansion, new, more stringent emission limits were imposed by the latest Ontario Ministry of Environment A-7 Guideline and the Canada-Wide Standards developed by Canadian Council of Ministers of Environment. A Selective Catalytic Reduction (SCR) system with a sodium tetrasulphide injection was selected to supplement the existing dry scrubber/fabric filter air pollution control system for additional reduction in mercury, nitrogen oxides and dioxins/furans emissions. With the upgraded air pollution control technology, the facility will be able to meet the latest emission standards and, to a certain degree, any new standards that may be enforced in future years. This paper outlines a partnership model that has been successfully implemented in Ontario and has contributed to the public accepting waste-to-energy as integral part of the waste management system, ultimately resulting in facility expansion. It also describes the current facility and upgrade to the existing air pollution control system.


2011 ◽  
Vol 88-89 ◽  
pp. 503-508
Author(s):  
Cheng Fu Wang ◽  
Xiao Dong Shi

The fine dust PM2.5 can suspend in the air for a long period, penetrate human body's defense system, and deposit directly into the alveoli, where does harm to health. Because of the serious pollution and the trapping difficulty of ordinary dust removal technologies, PM2.5 has become the focus of international air pollution control. To effectively capture PM2.5, detailed analysis of the creation of PM2.5 have been done, and different trapping strategies specific to different creation sources have been posed in this paper. Low collection efficiency of PM2.5 can be expected to be solved by the electrostatic precipitator, which applies the charging and coagulation for fine dust, penetrating-type electric field, high frequency DC power supply, combined with reduced voltage optimization of the rapping mode, etc.


Author(s):  
Richard Saab ◽  
Michael Sandell ◽  
Vincent Petti ◽  
Gabriel Pacheco

Siemens Environmental Systems & Services (SESS), formerly Wheelabrator Air Pollution Control (WAPC) started up their first SDA on a Municipal Solid Waste (MSW) incinerator in 1987, and now have 50 operating at Waste to Energy (WTE) plants alone. We were pioneers in the development of semi-dry scrubbing technology and are continuously improving it. While Spray Dryer Absorber (SDA) / Fabric Filter (FF) technology is not new, it is still a viable option for multi-pollutant control from many processes including Municipal Solid Waste (MSW) incinerators. It has been the Best Available Control Technology for this industry during the last 25 years. High performance and reliability have been experienced at these facilities across the United States. The simple, proven design of the SDA/FF system has been shown to be effective in acid gas, particulate, heavy metals, and dioxin/furan control. Technology advancements make this technology even more attractive. This paper will provide an update on SDA/FF technology for controlling emissions from MSW incinerators, particularly in relation to performance enhancements, including advancements in SDA dual fluid nozzles and Fabric Filter design. The new generation SESS Fabric Filter enhances system performance by providing lower emissions, lower compressed air consumption, and longer bag life.


Author(s):  
Willard Wilson

In the early 1980’s Polk County and four other partner counties in rural Northwest Minnesota made the decision to incorporate a waste to energy (WTE) plant into their solid waste management program. This decision was made to comply with the Minnesota hierarchy for solid waste management, to extend the life of the Polk County landfill, and to recover valuable energy from the waste. The plant was constructed in 1987 and began burning MSW in 1988. The processing technology consisted of two starved air mass burn municipal solid waste combustors each with a combustion capacity of 40 tons of MSW per day, and produced energy in the form of saturated steam for customers in the adjacent industrial park. Initially each train utilized a two field electrostatic precipitator (ESP) as the air pollution control (APC) device. In 1996, a materials recovery system (MRF) was constructed in front of the waste combustors to remove problem/objectionable items most of which are recyclable. This facility has been a tremendous success providing many benefits including reduced stack emissions, lower O & M costs for the WTE units, and revenues from the sales of extracted recyclables. In 1998 Polk began injecting powdered activated carbon (PAC) into the flue gas of each unit upstream of the ESP to attain compliance with new State limits for dioxin/furans and mercury. Then in 2000 Polk County proceeded with an APC retrofit project designed to meet revised EPA emission guidelines which set more stringent limits for pollutants currently regulated and added limits for several other pollutants previously unregulated. In 2001 and 2004 Polk County performed research demonstration projects substituting screened WTE combined ash for a portion of natural aggregate in two asphalt road construction projects. Both projects passed stringent environmental testing and demonstrated superior strength and flexibility performance compared to conventional asphalt. Polk County is now proceeding with the installation of a turbine/generator to produce renewable electricity with excess steam. The electricity produced will be used to reduce the demand for incoming power from the local utility. Initially this may be only a twenty-five percent reduction but has the potential to be more in the event one or more of the steam customers reduces their dependence on steam from the WTE plant. All of these projects received funding assistance from the State of Minnesota in the form of Capital Assistance Grants. In 2003 the WTE plant and MRF became debt free and Polk County lowered the tip fee resulting in a disposal rate that is fairly competitive with that of most out of state landfills. This paper will discuss the development, success, and benefits of this completely integrated solid waste management system for these five counties located in Northwest Minnesota.


Author(s):  
Bradley Ginger

Advances in gasification technology have opened up a number of commercial opportunities to generate energy from a wide range of non-traditional feed stocks. Gasification technology platforms from a number of providers are in development with the goal of creating modular solutions for supplying the energy needs of local communities, often in solutions as small as 10 to 20 MW increments. Such technologies offer potential project developers the ability to explore local opportunities for fuel supply from a number of sources. These opportunity fuels cover a wide range of potential energy sources as far reaching as recovered plastic, recovered tires, poultry litter, and a wide variety of woody biomass. The syn-gas produced from the gasification of such varied opportunity fuels contains a number of undesired trace components. These components will need to either be removed via gas conditioning, or alternatively be combusted with the syn-gas in an oxidation step which will produce a flue gas requiring air pollution control. Gas conditioning requirements vary depending on the desired end use of the syn-gas whether as a utility quality fuel or as an intermediate to a further chemical pathway. Flue gas target levels are defined by current environmental legislation. The potential pollutants produced in the flue gas pathway include Particulate Matter, Hydrogen Chloride, Sulfur Dioxide, Sulfuric Acid Mist, and Oxides of Nitrogen. To ensure operational compliance of the system stack emissions both now and in the future, proper pollution control technology is paramount. This presentation will address an emerging air pollution control technology that embodies all of these removal steps in a single device specifically designed to meet current and expected future environmental needs. EISENMANN’s recently patented multi-pollutant control system, the Wet Electrostatic Precipitator Dual Field or WESP-2F, includes the use of a pre-scrubbing chamber for large PM, SO2, and water soluble NO2 removal. Following the quench and pre-scrubbing region, a specially tuned downflow wet ESP field is responsible for finer PM and Sulfuric Acid aerosol removal, as well as an important Ozone producing stage that oxidizes non-water soluble forms of NOx. As the gas continues to travel through the system, a secondary scrubbing chamber is used to further reduce NOx by scrubbing the newly formed NO2 that has been formed from the oxidation of other forms of NOx through the use of Ozone produced by the electrostatic precipitator. The final polishing stage of the system includes an upflow wet electrostatic precipitator field for the removal of newly oxidized material as well as any heavy metals present. Research and testing on the aforementioned system took place using a pilot sized unit operating a slipstream off a 20 MW commercial sized gasifier testing a number of opportunity fuels. Expected performance was validated proving high removal efficiencies for pollutants specifically addressed earlier. Results from a wide variety of opportunity fuels will be discussed. Current implementation of the technology in gasification projects following the flue gas pathway is underway and is currently viewed as an acceptable solution to the environmental regulations associated with the plant requirements.


Author(s):  
Dan Shabat

The Southernmost Waste-to-Energy Facility, is a 150 ton per day, stoker fired, mass burn facility located on Stock Island in the City of Key West, Florida. The facility is owned and operated by the City of Key West and is categorized as a Small MWC, Class II facility under the Emission Guidelines for Existing Small Municipal Waste Combustors, 40 CFR 60 subpart BBBB. In order to reliably comply with the requirements of the small MWC regulations, the facility air pollution control trains were required to be retrofitted to include acid gas control and improved particulate control through the installation of scrubbers and baghouses. Additional controls for metals including mercury may have been added in order to assure compliance with these regulations. Other facility upgrades including combustion enhancements may have been required to assure compliance with allowable carbon monoxide limitations of the Small MWC regulations. The need for the air pollution control retrofit project represented a major expenditure for the City of Key West. Faced with a decision regarding its long term future waste handling and disposal methods, the City examined various options for future solid waste handling and disposal including the option to proceed with retrofitting the waste-to-energy facility and relying on waste-to-energy as a long-term major component of Key West’s solid waste handling and disposal plans. Alternatively, the City explored the option of building a transfer station, either privately or publicly operated, and contracting the hauling and disposal of the City’s waste to a private firm. The transfer station option would require a conversion of the waste-to-energy facility to a transfer station through a major demolition and reconstruction project. The City also considered available alternative technologies such as gasification for example. In order to help the City sort through the many issues associated with the solid waste handling and disposal options, a Technical Advisory Committee was formed consisting of engineering and legal consultants, City commission members, and other City representatives. Dvirka and Bartilucci Consulting Engineers, as a member of the Technical Advisory Committee, was responsible for estimating the costs associated with the design, construction and operation of a waste-to-energy facility air pollution control retrofit project. This paper describes the facility and discusses the decision making process of the technical advisory committee and the ultimate decision of the City Commission to close the Southernmost Waste to Energy Facility. The paper includes the requirements for closure of the facility and discusses how the City arrived at its final decision.


Author(s):  
Craig Gillum ◽  
Arthur Cole ◽  
Roger Anderson

This paper discusses the design, startup and operation of four rebuilt and redesigned 250 TPD MSW combustion trains located at the McKay Bay Waste to Energy Facility in Tampa Florida. Each independent MSW train consists of a new steam generator, reciprocating grate stoker, ash handling and air pollution control system. The new steam generators are built on the footprint of the original units, which were removed in their entirety leaving only the lower foundation steel. The refurbishment was accomplished in two stages to permit the facility to remain in operation. The new steam generators are designed to minimize fouling, maximize the amount of operating time between cleaning cycles and maintain steam temperature. Evaluation of startup and operating data demonstrates that the units exceed their planned operating time between cleaning cycles and will provide consistent reliable performance over the service life of the facility.


Sign in / Sign up

Export Citation Format

Share Document