Vitrification of Bottom Ash From AVR MSW Incinerators

Author(s):  
Y. Xiao ◽  
M. Oorsprong ◽  
Y. Yang ◽  
J. H. L. Voncken

During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in the Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by leaching extraction. The thermodynamics of slag and metal formation is discussed. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.

2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


2021 ◽  
Vol 121 ◽  
pp. 33-41
Author(s):  
Yanjun Hu ◽  
Lingqin Zhao ◽  
Yonghao Zhu ◽  
Bennong Zhang ◽  
Guixiang Hu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
B. Simões ◽  
P. R. da Silva ◽  
R. V. Silva ◽  
Y. Avila ◽  
J. A. Forero

This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix.


2021 ◽  
Vol 13 (2) ◽  
pp. 535
Author(s):  
Jing Gao ◽  
Tao Wang ◽  
Jie Zhao ◽  
Xiaoying Hu ◽  
Changqing Dong

Melting solidification experiments of municipal solid waste incineration (MSWI) fly ash were carried out in a high-temperature tube furnace device. An ash fusion temperature (AFT) test, atomic absorption spectroscopy (AAS), scanning electron microscope (SEM), and X-ray diffraction (XRD) were applied in order to gain insight into the ash fusibility, the transformation during the melting process, and the leaching behavior of heavy metals in slag. The results showed that oxide minerals transformed into gehlenite as temperature increased. When the temperature increased to 1300 °C, 89 °C higher than the flow temperature (FT), all of the crystals transformed into molten slag. When the heating temperatures were higher than the FT, the volatilization of the Pb, Cd, Zn, and Cu decreased, which may have been influenced by the formation of liquid slag. In addition, the formation of liquid slag at a high temperature also improved the stability of heavy metals in heated slag.


2020 ◽  
Vol 901 ◽  
pp. 65-71
Author(s):  
Woravith Chansuvarn

Bottom ash is a part of by-product from the municipal solid waste power plants which is always a wider problem for the urban and rural communities due to its disposal plants may cause serious environmental pollution. This work was focused on the residual heavy metal in an incinerator bottom ash from the municipal waste power plant placed in Nongkham district, Bangkok. Four bottom ash samples were obtained in 2017. After drying and grounding, the bottom ash samples were prepared to clear solution with the microwave digestion technique using nitric, hydrochloric and hydrofluoric acid under the heating program. The total residual heavy metals in the incinerator bottom ashes, such as lead, copper, zinc, and cadmium were determined by using flame atomic absorption spectrophotometer (FAAS) with deuterium background correction. The total concentration of lead, copper, zinc and cadmium were found in the range of 280.40-354.22mg kg-1, 365.35-524.45 mg kg-1, 1,527.25-2,074.34 mg kg-1, and 0.48-1.02 mg kg-1, respectively. The recovery of all metals was found in the range of 89.4-101.2% and the relative standard deviation (RSD) was to be 2.15-3.55 % (n=7). The concentration of zinc, copper, and lead was found high levels, while cadmium was low concentration. Heavy metals in solid waste material occur in different chemical forms and phases. The sample preparation based on the microwave digestion was successfully developed for the waste samples with a good reliability.


2011 ◽  
Vol 474-476 ◽  
pp. 1099-1102
Author(s):  
Hai Ying Zhang ◽  
Yi Zheng ◽  
Hong Tao Hu ◽  
Jing Yu Qi

Bottom ash from municipal solid waste incineration (MSWI) has been previously suggested as an adsorbent for removing heavy metals from wastewater due to its high porosity and large surface area. In this study the adsorption characteristics of heavy metals were investigated using various particle sizes of MSWI bottom ash. The adsorption experiment was conducted using synthetic wastewater containing Cu, Zn, Pb and Cd as a function of residence time, initial pH, ash dosage and particle size, respectively. The adsorption rate increased with decreasing particle size and with increasing residence time. Through the above analysis, this work proved that bottom ash was effective in adsorbing the four heavy metals.


Sign in / Sign up

Export Citation Format

Share Document