On the Far-Field Propagation of High-Speed Jet Noise

Author(s):  
Brenton Greska ◽  
Anjaneyulu Krothapalli

This paper deals with the effects of atmospheric absorption on the propagation of high-speed jet noise. The common practice for determining the far-field jet noise spectra at a distance far from the jet exit (>100D, where D is the nozzle exit diameter) involves extrapolating data that is typically obtained between 35D and 100D from the nozzle exit. The data is extrapolated along a radial line from the nozzle exit by accounting for the effects of spherical spreading and atmospheric absorption. A previous paper discussed far-field measurements that were obtained for a twin engine aircraft at three locations along a radial line in the peak noise radiation direction. The authors were unable to extrapolate the spectra from the nearest location to either of the further locations and the observed differences were attributed to nonlinear effects in the jet noise signal. It is the purpose of this paper to show that the common extrapolation practice is valid for high speed jets, except in the peak radiation direction and its surrounding angles. Mach wave radiation is present at these locations and the common practice will yield unsatisfactory results, similar to those observed in the previous paper. The data used in this paper is taken from experiments carried out at 1/5th-scale and full scale and the experimental conditions of these high-speed jets are quite similar to those of the previous paper.

Author(s):  
Dean Long ◽  
Steven Martens

Model scale tests are conducted to assess the Noise/Performance trade for high speed jet noise reduction technologies. It is demonstrated that measuring the near field acoustic signature with a microphone array can be used to assess the far field noise using a procedure known as acoustic holography. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Tests are conducted on convergent/divergent nozzles with three different area ratios, and several different chevron geometries. Noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. These results show good agreement with actual far field measurements from tests in the GE Cell 41 Acoustic Test Facility. Simultaneous performance measurement shows the change in thrust coefficient for different test conditions and configurations. Chevrons attached to the nozzle exit can reduce the noise by several dB at the expense of a minimal thrust loss.


Author(s):  
Dean Long ◽  
Steve Martens

Part I of this paper describes a methodology for assessing the far field jet noise from high speed exhaust nozzles using a microphone array in the near field of the exhaust plume. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Part II described here provides a direct validation of this process using a generic CD nozzle in a facility where both the near field and the far field are measured simultaneously. Comparison of these data sets show good agreement over the typical operating range for this type of nozzle. The far field noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. Subsequent tests in an acoustically treated nozzle thrust stand demonstrate the value of the near field array allowing immediate feedback on the noise/performance tradeoff for high speed jet noise reduction technologies.


Author(s):  
Anjaneyuly Krothapalli ◽  
Brenton Greska ◽  
Vijay Arakeri

This paper deals with an experimental investigation on the suppression of high-speed jet noise using air/water microjet injection at the nozzle exit. The far-field acoustic measurements from a high temperature Mj = 1.38 and Mj = 0.9 axisymmetric jet issuing from a converging nozzle show the suppression of screech tones, Mach wave radiation/crackle and mixing noise due to the use of microjets. Estimations of the contributions of different noise sources to the far-field sound are made using the current data supported by observations of previous investigators. It appears that the mixing noise reduction due to elimination of large eddies is found to be about 3–5 dB. Any further reduction of noise may only be accomplished by significant turbulence suppression and thermodynamic changes in the jet.


Author(s):  
Clifford A. Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet-Surface Interaction Tests are intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. The initial goal is to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet-surface interaction is creating additional noise, and (2) determine regions of interest for future, more detailed, tests. To meet these objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface length was varied between 2 and 20 jet diameters downstream of the nozzle exit. Similarly, the radial distance from the jet centerline to the surface face was varied between 1 and 16 jet diameters. Far-field and phased array noise data were acquired at each combination of surface length and radial location using two nozzles operating at jet exit conditions across several flow regimes: subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic. The far-field noise results, discussed here, show where the jet noise is partially shielded by the surface and where jet-surface interaction noise dominates the low frequency spectrum as a surface extends downstream and approaches the jet plume.


2008 ◽  
Vol 615 ◽  
pp. 253-292 ◽  
Author(s):  
CHRISTOPHER K. W. TAM ◽  
K. VISWANATHAN ◽  
K. K. AHUJA ◽  
J. PANDA

The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.


Author(s):  
Foluso Ladeinde ◽  
Xiaodan Cai ◽  
Ken Alabi ◽  
Ramons Reba ◽  
Robert Schlinker ◽  
...  
Keyword(s):  

1980 ◽  
Vol 23 (3) ◽  
pp. 630-645 ◽  
Author(s):  
Gerald Zimmermann ◽  
J.A. Scott Kelso ◽  
Larry Lander

High speed cinefluorography was used to track articulatory movements preceding and following full-mouth tooth extraction and alveoloplasty in two subjects. Films also were made of a control subject on two separate days. The purpose of the study was to determine the effects of dramatically altering the structural dimensions of the oral cavity on the kinematic parameters of speech. The results showed that the experimental subjects performed differently pre and postoperatively though the changes were in different directions for the two subjects. Differences in both means and variabilities of kinematic parameters were larger between days for the experimental (operated) subjects than for the control subject. The results for the Control subject also showed significant differences in the mean values of kinematic variables between days though these day-to-day differences could not account for the effects found pre- and postoperatively. The results of the kinematic analysis, particularly the finding that transition time was most stable over the experimental conditions for the operated subjects, are used to speculate about the coordination of normal speech.


Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document