Analytical Study of Appropriate Design for the High-Grade Induction Bend Pipes Subjected to Large Ground Deformation

Author(s):  
Hiroshi Yatabe ◽  
Naoki Fukuda ◽  
Tomoki Masuda ◽  
Masao Toyoda

In this study, the deformability of induction bends made out of high-grade line pipe is analytically discussed. In order to clarify the significant parameters for the deformability, 30 cases of finite element analyses simulating the deformation behavior subjected to internal pressure and bending moment were carried out. The effects of the mechanical properties, the geometry of the “bend” part and the properties of the “transition” part on the deformability were investigated. Finally, the change in the integrity of the buried pipeline due to the quality of the induction bend was quantitatively examined. The results showed that the effects of the mechanical properties and geometry of the “bend” part on the deformability were small in the closing mode. On the other hand, the deformability was sensitive to such parameters in the opening mode. Especially, the properties of the “transition” part were significant. Consequently this study indicated that the mechanical properties, the dimensions and tolerance and the properties of the “transition” part should be appropriately designed in proportion to the amount of assumed ground deformation.

2004 ◽  
Vol 126 (4) ◽  
pp. 376-383 ◽  
Author(s):  
Hiroshi Yatabe ◽  
Naoki Fukuda ◽  
Tomoki Masuda ◽  
Masao Toyoda

In order to clarify the significant parameters to control the deformability of high-grade induction bend pipes, finite element analyses simulating the deformation behavior subjected to an internal pressure and bending moment were carried out. Parametric studies were conducted using the finite element models with various mechanical properties and geometric imperfections. The change in the integrity of the buried pipeline due to the quality of the induction bend pipe was then quantitatively examined. Consequently, this study indicated that the mechanical properties, the dimensions and tolerance and the properties of the “transition” part should be appropriately designed in proportion to the ground deformation.


2004 ◽  
Vol 126 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Hiroshi Yatabe ◽  
Naoki Fukuda ◽  
Tomoki Masuda ◽  
Masao Toyoda

In this study, the deformability of high-grade pipelines subjected to an axial compressive deformation was experimentally and analytically discussed. Six cases of axial compression experiments with high-grade line pipe were carried out. The pipe specimens had various material properties and wall thickness. Finite-element analyses were also carried out and verified the reliability. Then, a finite-element analysis method for evaluating the deformability of the line pipe was established. By using this method, parametric studies were carried out. The effects of the strain-hardening behavior and pipe geometry on the deformability of the high-grade pipelines were examined.


2004 ◽  
Vol 120 ◽  
pp. 161-168
Author(s):  
Y. Vincent ◽  
J.-M. Bergheau ◽  
J.-B. Leblond ◽  
J.-F.Jullien

In most numerical simulations of welding, due to the very short times involved, viscoplastic effects are neglected. However an experimental mock-up developed at INSA has evidenced the possible importance of such effects, which must therefore be incorporated in a more refined description of the material behaviour. This paper presents such a description; an extension of Leblond’s model for transformation plasticity, accounting for the dependence of mechanical properties upon strain rate, is proposed. Finite element analyses using elastic-plastic or elastic-viscoplastic constitutive laws are compared with experiments, and it is found that incorporation of viscoplastic effects significantly improves the quality of the agreement between numerical and experimental results.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Tim Tofan ◽  
Rimantas Stonkus ◽  
Raimondas Jasevičius

The aim of this research is to investigate related effect of dyeability to linen textiles related to different printing parameters. The study investigated the change in color characteristics when printing on linen fabrics with an inkjet MIMAKI Tx400-1800D printer with pigmented TP 250 inks. The dependence of color reproduction on linen fabrics on the number of print head passes, number of ink layers to be coated, linen fabric density, and different types of linen fabric was investigated. All this affects the quality of print and its mechanical properties. The change in color characteristics on different types of linen fabrics was determined experimentally. We determine at which print settings the most accurate color reproduction can be achieved on different linen fabrics. The difference between the highest and the lowest possible number of head passages was investigated. The possibilities of reproducing different linen fabric colors were determined.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4329
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

An experimental study was performed on a low-density plasma discharge using two different configurations of the plasma cell cathode, namely, the one mesh system electrodes (OMSE) and the one mesh and three system electrodes (OMTSE), to determine the electrical characteristics of the plasma such as current–voltage characteristics, breakdown voltage (VB), Paschen curves, current density (J), cathode fall thickness (dc), and electron density of the treated sample. The influence of the electrical characteristics of the plasma fluid in the cathode fall region for different cathode configuration cells (OMSE and OMTSE) on the performance quality of a surgical gown was studied to determine surface modification, treatment efficiency, exposure time, wettability property, and mechanical properties. Over a very short exposure time, the treatment efficiency for the surgical gown surface of plasma over the mesh cathode at a distance equivalent to the cathode fall distance dc values of the OMTSE and for OMSE reached a maximum. The wettability property decreased from 90 to 40% for OMTSE over a 180 s exposure time and decreased from 90 to 10% for OMSE over a 160 s exposure time. The mechanisms of each stage of surgical gown treatment by plasma are described. In this study, the mechanical properties of the untreated and treated surgical gown samples such as the tensile strength and elongation percentage, ultimate tensile strength, yield strength, strain hardening, resilience, toughness, and fracture (breaking) point were studied. Plasma had a more positive effect on the mechanical properties of the OMSE reactor than those of the OMTSE reactor.


2019 ◽  
Vol 10 (3) ◽  
pp. 163-167
Author(s):  
Jon Rosenberg ◽  
Allie Massaro ◽  
James Siegler ◽  
Stacey Sloate ◽  
Matthew Mendlik ◽  
...  

Background: Palliative care improves quality of life in patients with malignancy; however, it may be underutilized in patients with high-grade gliomas (HGGs). We examined the practices regarding palliative care consultation (PCC) in treating patients with HGGs in the neurological intensive care unit (NICU) of an academic medical center. Methods: We conducted a retrospective cohort study of patients admitted to the NICU from 2011 to 2016 with a previously confirmed histopathological diagnosis of HGG. The primary outcome was the incidence of an inpatient PCC. We also evaluated the impact of PCC on patient care by examining its association with prespecified secondary outcomes of code status amendment to do not resuscitate (DNR), discharge disposition, 30-day mortality, and 30-day readmission rate, length of stay, and place of death. Results: Ninety (36% female) patients with HGGs were identified. Palliative care consultation was obtained in 16 (18%) patients. Palliative care consultation was associated with a greater odds of code status amendment to DNR (odds ratio [OR]: 18.15, 95% confidence interval [CI]: 5.01-65.73), which remained significant after adjustment for confounders (OR: 27.20, 95% CI: 5.49-134.84), a greater odds of discharge to hospice (OR: 24.93, 95% CI: 6.48-95.88), and 30-day mortality (OR: 6.40, 95% CI: 1.96-20.94). Conclusion: In this retrospective study of patients with HGGs admitted to a university-based NICU, PCC was seen in a minority of the sample. Palliative care consultation was associated with code status change to DNR and hospice utilization. Further study is required to determine whether these findings are generalizable and whether interventions that increase PCC utilization are associated with improved quality of life and resource allocation for patients with HGGs.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 847
Author(s):  
Anita Zapałowska ◽  
Natalia Matłok ◽  
Miłosz Zardzewiały ◽  
Tomasz Piechowiak ◽  
Maciej Balawejder

The aim of this research was to show the effect of the ozonation process on the quality of sea buckthorn (Hippophae rhamnoides L.). The quality of the ozonated berries of sea buckthorn was assessed. Prior to and after the ozone treatment, a number of parameters, including the mechanical properties, moisture content, microbial load, content of bioactive compounds, and composition of volatile compounds, were determined. The influence of the ozonation process on the composition of volatile compounds and mechanical properties was demonstrated. The ozonation had negligible impact on the weight and moisture of the samples immediately following the treatment. Significant differences in water content were recorded after 7 days of storage. It was shown that the highest dose of ozone (concentration and process time) amounting to 100 ppm for 30 min significantly reduced the water loss. The microbiological analyses showed the effect of ozone on the total count of aerobic bacteria, yeast, and mold. The applied process conditions resulted in the reduction of the number of aerobic bacteria colonies by 3 log cfu g−1 compared to the control (non-ozonated) sample, whereas the number of yeast and mold colonies decreased by 1 log cfu g−1 after the application of 100 ppm ozone gas for 30 min. As a consequence, ozone treatment enhanced the plant quality and extended plant’s storage life.


2007 ◽  
Vol 336-338 ◽  
pp. 1791-1792
Author(s):  
Hai Ping Cui ◽  
Jun Yan ◽  
Shi Guo Du ◽  
Xin Kang Du

Al2O3-Al2Cu3 multiphase coatings were prepared on the surface of steel by reactive flame spray. The binding strength, microhardness and abrasion quality of the coatings were measured and analyzed. The influence of the agglomerate size on the properties of the coatings was emphatically studied to choose suitable size range for Al-CuO reactive system. The results showed that coatings prepared by using –150∼+250 meshes agglomerates exhibited good mechanical properties.


Author(s):  
Hidenori Shitamoto ◽  
Nobuyuki Hisamune

There are several methods currently being used to install offshore oil and gas pipelines. The reel-lay process is fast and one of the most effective offshore pipeline installation methods for seamless, ERW, and UOE line pipes with outside diameters of 18 inches or less. In the case of the reel-laying method, line pipes are subjected to plastic deformation multiplication during reel-laying. It is thus important to understand the change of the mechanical properties of line pipes before and after reel-laying. Therefore, full-scale reeling (FSR) simulations and small-scale reeling (SSR) simulations are applied as evaluation tests for reel-laying. In this study, FSR simulations were performed to investigate the effect of cyclic deformation on the mechanical properties of weldable 13Cr seamless line pipes. Furthermore, SSR simulations were performed to compare the results obtained by FSR simulations.


Sign in / Sign up

Export Citation Format

Share Document