Comparative Frequency Domain Seakeeping Analysis of a Fast Monohull in Regular Head Waves

Author(s):  
Thomas E. Schellin ◽  
Christian Beiersdorf ◽  
Xiao-Bo Chen ◽  
Adolfo Maron

Two sets of seakeeping computations and comparative model teats were performed for a fast monohull in regular waves. The first set of computations used an existing three-dimensional frequency domain panel code that formulates the potential flow problem by means of the zero-speed Green function. The second set used a modified version of this code that implemented an advanced software module, newly developed within the European research project WAVELOADS, where the free-surface forward-speed Green function method based on the Fourier-Kochin formulation accounts for forward speed effects. Although this formulation provided a solid mathematical basis for obtaining robust and accurate numerical predictions, numerical inaccuracies prevented obtaining satisfactory results. For nearly all cases investigated, predictions from the original (zero-speed Green function) code correlated more favorably with test data than those from the modified (forward-speed Green function) code. For the fast monohull investigated here, practically relevant global load predictions based on the zero-speed Green function correlated favorably with measurements.

Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
G. J. Lee ◽  
M. S. Shin

The radiation-diffraction potential of a ship advancing in waves is studied using the three-dimensional frequency-domain forward-speed free-surface Green function (Brard 1948) and the forward-speed Green integral equation (Hong 2000). Numerical solutions are obtained by making use of a second-order inner collocation boundary element method which makes it possible to take account of the line integral along the waterline in a rigorous manner (Hong et al. 2008). The present forward-speed Green integral equation includes not only the usual free surface condition for the potential but also the adjoint free surface condition for the forward-speed free-surface Green function as indicated by Brard (1972). Comparison of the present numerical results of the heave-heave wave damping coefficients and the experimental results for the Wigley ship models I, II and III (Journee 1992) has been presented. These coefficients are compared with those calculated without taking into account of the line integral along the waterline in order to show the forward speed effect represented by the waterline integral when it is properly included in the free-surface Green integral equation. Comparison of the present numerical results and the equivalent time-domain results (Hong et al. 2013) has also been presented.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
H. G. Sung

The radiation and diffraction potentials of a ship advancing in waves are calculated in the time-domain using the three-dimensional time-domain forward-speed free-surface Green function and the Green integral equation on the basis of the Neumann-Kelvin linear wave hypothesis. The Green function approximated by Newman for large time is used together with the Green function by Lamb for small time. The time-domain diffraction problem is solved for the time derivative of the potential by using the time derivative of the impulsive incident wave potential represented by using the complementary complex error function. The integral equation for the potential is discretized according to a second-order boundary element method where the collocation points are located inside the panel. It makes it possible to take account of the line integral along the waterline in a rigorous manner. The six-degree-of-freedom motion and memory functions as well as the diffraction impulse response functions of a hemisphere and the Wigley seakeeping model are presented for various Froude numbers. Comparisons of the wave damping and exciting force and moment coefficients for zero forward speed, calculated by using the Fourier transforms of the time-domain results and the frequency-domain coefficients calculated by using the improved Green integral equation which is free of the irregular frequencies, have been shown to be satisfactory. The wave damping coefficients for non-zero forward speed, calculated by using Fourier transforming of the present time-domain results have also been compared to the experimental results and agreement between them has been shown to be good. A simulation of coupled heave-pitch motion of the Wigley seakeeping model advancing in regular head waves of unit amplitude has been carried out.


Author(s):  
D. C. Hong ◽  
H. G. Sung ◽  
S. Y. Hong

A three-dimensional time-domain calculation method is of crucial importance in prediction of ship motion with forward speed in a severe irregular sea. The exact solution of the free surface wave–ship interaction problem is very complicated because of the extremely nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. It is a simplified version of the method known as LAMP (Lin and Yue 1990) where the exact body boundary condition is applied on the instantaneous wetted surface of the ship while free-surface condition is linearized. In the present study, the Froude-Krylov force and the hydrostatic restoring force are calculated on the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials on the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials. The integral equation for the radiation potential is discretized according to the second-order boundary element method (Hong and Hong. 2008). The diffraction impulse response functions of the Wigley seakeeping model are presented for various Froude numbers. A simulation of coupled heave-pitch motion of the Wigley model advancing in regular head waves of large amplitude has been carried out. Comparisons between the fully linear and the present approximate body nonlinear computations have been made at various Froude numbers.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Fuat Kara

The numerical predictions of the hydroelasticity of floating bodies with and without forward speed are presented using a direct time domain approximation. Boundary-Integral Equation Method (BIEM) with three-dimensional transient free surface Green function and Neumman-Kelvin approximation is used for the solution of the hydrodynamic part and solved as impulsive velocity potential whilst Euler-Bernoulli beam approach is used for the structural analysis with analytically defined modeshapes. The hydrodynamic and structural parts are then fully coupled through modal analysis for the solution of the hydroelastic problem. A stiff structure is then studied assuming that contributions of rigid body modes are much bigger than elastic modes. A rectangular barge with zero speed and Wigley hull form with forward speed are used for the numerical analyses and the comparisons of the present ITU-WAVE numerical results for response amplitude operator, bending moment, shear force etc. show satisfactory agreement with existing experimental results.


Author(s):  
S. V. Subramanian ◽  
R. Bozzola ◽  
Louis A. Povinelli

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.


2000 ◽  
Vol 124 (1) ◽  
pp. 140-146 ◽  
Author(s):  
V. Schramm ◽  
K. Willenborg ◽  
S. Kim ◽  
S. Wittig

This paper reports numerical predictions and measurements of the flow field in a stepped labyrinth seal. The theoretical work and the experimental investigations were successfully combined to gain a comprehensive understanding of the flow patterns existing in such elements. In order to identify the influence of the honeycomb structure, a smooth stator as well as a seal configuration with a honeycomb facing mounted on the stator wall were investigated. The seal geometry is representative of typical three-step labyrinth seals of modern aero engines. The flow field was predicted using a commercial finite volume code with the standard k-ε turbulence model. The computational grid includes the basic seal geometry as well as the three-dimensional honeycomb structures.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aerothermal, experimental, and computational studies of a trapezoidal cross-sectional model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in Part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67,500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional particle image velocimetry measurements are performed in several planes around midspan of the channel and recombined to visualize and quantify three-dimensional flow features. The crossing-jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume Reynolds-averaged Navier–Stokes solver, CEDRE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konrad Rolle ◽  
Dmytro Yaremkevich ◽  
Alexey V. Scherbakov ◽  
Manfred Bayer ◽  
George Fytas

AbstractHypersonic phononic bandgap structures confine acoustic vibrations whose wavelength is commensurate with that of light, and have been studied using either time- or frequency-domain optical spectroscopy. Pulsed pump-probe lasers are the preferred instruments for characterizing periodic multilayer stacks from common vacuum deposition techniques, but the detection mechanism requires the injected sound wave to maintain coherence during propagation. Beyond acoustic Bragg mirrors, frequency-domain studies using a tandem Fabry–Perot interferometer (TFPI) find dispersions of two- and three-dimensional phononic crystals (PnCs) even for highly disordered samples, but with the caveat that PnCs must be transparent. Here, we demonstrate a hybrid technique for overcoming the limitations that time- and frequency-domain approaches exhibit separately. Accordingly, we inject coherent phonons into a non-transparent PnC using a pulsed laser and acquire the acoustic transmission spectrum on a TFPI, where pumped appear alongside spontaneously excited (i.e. incoherent) phonons. Choosing a metallic Bragg mirror for illustration, we determine the bandgap and compare with conventional time-domain spectroscopy, finding resolution of the hybrid approach to match that of a state-of-the-art asynchronous optical sampling setup. Thus, the hybrid pump–probe technique retains key performance features of the established one and going forward will likely be preferred for disordered samples.


Sign in / Sign up

Export Citation Format

Share Document