Deep Penetration of Spudcan Foundation Into NC Clay

Author(s):  
M. S. Hossain ◽  
Z. Myhreyar ◽  
Y. Hu ◽  
M. F. Randolph

The excessive penetration of spudcan foundation in jackup rigs can be costly in offshore operation. Thus, the accurate prediction of load-penetration response becomes increasingly important in offshore design. The performance of spudcan foundation during installation, subjected to vertical loading on normally consolidated (NC) clay, is investigated physically and numerically. Experiments are carried out on kaolin clay in a drum centrifuge and FE analyses are performed using AFENA. During initial penetration, soil flows towards the ground surface and therefore heave occurs close to the spudcan edges. It flows back on top of the spudcan right after the heave passes the spudcan shoulder and shortly a substantial back flow causes the spudcan to be fully embedded. When penetration ratio (d/D) reaches 0.75, a deep failure mechanism achieves. Soil failure mechanisms play a key role for evaluating bearing response at various penetration depths. By comparing FE results with centrifuge test results, an identical bearing capacity factor of Nc = 10.5 is obtained for deeply embedded spudcan. The roughness of the soil-spudcan interface has shown 10% difference in bearing capacity when d/D is larger than 1.5.

Author(s):  
M. S. Hossain ◽  
Y. Hu ◽  
M. F. Randolph

In order to design a safe spudcan foundation, it is important to predict its bearing behaviour accurately based on the corresponding soil failure mechanisms. Thus, the performance of spudcan foundation, during deep penetration into uniform soil, is investigated physically and numerically. In physical testing, a series of centrifuge tests are carried out in a drum centrifuge. The half-spudcan model tests with subsequent Particle Image Velocimetry (PIV) analysis are conducted to reveal soil failure mechanisms during spudcan penetration. And the full spudcan model tests are conducted to investigate the bearing capacity of spudcan. In numerical simulation, FE analyses are performed considering smooth and rough soilspudcan interface. From the physical tests and numerical analyses, it is observed that the cavity is formed above the spudcan as it is penetrating into uniform clay. At certain penetration depths, the soil underneath the spudcan starts to flow back on top of the spudcan, which leads the spudcan to be embedded with further penetration. Soil flow mechanisms, at various penetration depths, play a key role in footing bearing response. And the ultimate undrained bearing capacity factor of Nc = 10.5 (smooth) and 12 (rough) are obtained at deep penetration.


2014 ◽  
Vol 2 (1) ◽  
pp. 11-29
Author(s):  
Ahmad Jabber Hussain ◽  
Alaa Dawood Salman ◽  
. Nazar Hassan Mohammad

      According to this theoretical study which was about loading of piles under different condition of loading (compression and up-lift forces ) and for deferent pile installation (vertical and inclined pile ) by which it called (positive batter pile ) when the inclination of the load and pile is in the same direction and called (negative batter pile) when the inclination of load is opposite to the pile inclination, and from studying these cases the results of analysis can be summarize in the flowing points: 1-Variation of load inclination on piles effects on the bearing capacity and uplift resistance. It was found that bearing capacity of the piles increase with increasing of load inclination up to the inclination angle (37.5ͦ) which represents the maximum bearing capacity and then the bearing capacity decrease with increasing of load inclination. 2- Variation of batter pile affects the bearing capacity of the pile and up-lift resistance. by which equivalent angle will be used as result between the load and piles inclination and this angle will be used in calculation of piles resistance . 3- It was noticed the shape of soil failure is highly affected by the inclination of pile. The shape of failure for the soil which is in contact with pile and this include (vertical and batter piles) is highly affected by the angle of inclination.


2021 ◽  
Vol 11 (10) ◽  
pp. 4432
Author(s):  
Jiseong Kim ◽  
Seong-Kyu Yun ◽  
Minsu Kang ◽  
Gichun Kang

The purpose of this study is to grasp the behavior characteristics of a single batter pile under vertical load by performing a model test. The changes in the resistance of the pile, the bending moment, etc. by the slope of the pile and the relative density of the ground were analyzed. According to the results of the test, when the relative density of the ground was medium and high, the bearing capacity kept increasing when the angle of the pile moved from a vertical position to 20°, and then decreased gradually after 20°. The bending moment of the pile increased as the relative density of the ground and the batter angle of the pile increased. The position of the maximum bending moment came closer to the ground surface as the batter angle of the pile further increased, and it occurred at a point of 5.2~6.7 times the diameter of the pile from the ground surface.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


1995 ◽  
Vol 32 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Fanyu Zhu ◽  
Jack I. Clark ◽  
Michael J. Paulin

This paper presents the results of a laboratory study on the at-rest lateral stress and Ko of two artificially cemented sands. A modified oedometer ring was used to measure the lateral stress of cemented and uncemented sands. Test materials were No. 3 Ottawa sand and a marine sand with Portland cement. The specimens were prepared using the method of undercompaction to minimize the influence of specimen preparation on test results. The cement contents were 0, 0.5, 1.0, 2.0, 4.0, and 8.0% by the weight of dry sand. The water content of the specimens was 4% of the weight of dry sand and cement. When the sands were cured under zero confining pressure, the test results indicated the following: the at-rest lateral stress in cemented sands decreases significantly with increasing cement content; the relationship between the vertical and at-rest lateral stress is nonlinear and the value of Ko increases with increasing vertical stress; and the lateral stress decreases with sand density and curing period. When the specimens were cured under vertical stress, the value of Ko during the removal of vertical loading increased with both overconsolidation ratio and cement content. Stress history has a significant influence on the behaviour of at-rest lateral stress in cement sands. Key words : cemented sand, Ko, lateral stress, overconsolidation, stress history.


2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


2011 ◽  
Vol 261-263 ◽  
pp. 989-993 ◽  
Author(s):  
Anuchit Uchaipichat ◽  
Ekachai Man Koksung

An experimental program of laboratory bearing tests was performed to characterize the bearing capacity of foundation on unsaturated granular soils. All tests were performed by pushing a circular rod on the surface of compacted sand specimens with different values of matric suction until failure. The test results show an increase in ultimate bearing capacity with increasing matric suction at low suction value but a decrease in that at high level of suction. The comparisons between the test results and simulations using the expressions proposed in this paper are presented and discussed. Good agreements are achieved for all testing values of suction.


2013 ◽  
Vol 50 (7) ◽  
pp. 793-800 ◽  
Author(s):  
Edgar Giovanny Diaz-Segura

The range of variation of the bearing capacity factor, Nγ, was assessed using 60 estimation methods for rough footings on sand subjected to static vertical loading. The influence on the Nγ values of the use of correlations for the estimation of the friction angle, [Formula: see text], derived from in situ tests was also assessed. The analysis shows a marked dependency on the methods used to determine Nγ, showing differences for the same [Formula: see text] values of up to 267% between estimated values. Uncertainty in the estimation of [Formula: see text], due to the use of correlations with in situ tests, leads to a range of variation for Nγ higher than that seen using the 60 estimation methods. Finally, given the regular use of the in situ standard penetration test (SPT) on sands, and based on a series of analyses using finite elements, a simplified method in terms of the SPT N-values is proposed for estimation of Nγ in footings on sands.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


Sign in / Sign up

Export Citation Format

Share Document