Subsea Pipeline Monitoring Using Fibre Optic Strain Sensors

Author(s):  
Damon Roberts

Fibre optic strain sensors are being increasingly deployed subsea due to significant improvements in reliability and ease of deployment brought about by embedding the optical fibre within a composite carrier that simply clamps to the structure to be monitored. There is significant experience in deploying these sensors on a variety of risers by a number of different installation methods as part of project integrity management strategies. Building on experience from monitoring risers, the technology is now being applied to other subsea infrastructure including manifolds and flowlines for monitoring parameters including pressure, axial load, shape and temperature. The same technology has even been deployed downhole for measuring loads in production tubing. Two different types of instruments have been designed to meet the needs of the industry, namely single point sensors and sensors that measure the profile of parameters over an extended distance. Point sensors have been developed to measure axial load, internal pressure, curvature and temperature. Each sensor mechanically attaches to the pipeline to transfer strains and temperatures in the pipeline. The instrument has been demonstrated to detect pressure changes from quasi-static to hundreds of hertz as required for conditions such as flow induced vibration and detecting slug flow. By locating a number of pressure sensors along a flowline the onset of waxing or hydrate build-up can be detected. The flexibility of the technology enables deployment in the yard, on deck and even retrofit installation by ROV. Profile sensors have been developed to measure bending profiles of flowline buckle regions, flowline free spans and riser touchdown zones. The profile sensors are elongated instruments that cover the entire length of the flowline to be monitored. Fibre optic sensors are embedded within a composite carrier during a continuous manufacturing process such as filament winding or pultrusion. Instruments with as many as 280 embedded sensors have been manufactured and deployed to date. Instruments have been developed to measure upheaval and lateral buckling strain profiles in HPHT flowlines. Deployment methods have been developed for retrofit installation and for installation on deck. The paper will present the current status of subsea pipeline monitoring using fibre optic strain sensors including results of both point and profile sensors. In addition further applications for the technology will be discussed.

2012 ◽  
Author(s):  
Constanze Schilder ◽  
Nadine Kusche ◽  
Vivien G. Schukar ◽  
Wolfgang R. Habel
Keyword(s):  

2013 ◽  
Author(s):  
Constanze Schilder ◽  
Harald Kohlhoff ◽  
Detlef Hofmann ◽  
Frank Basedau ◽  
Wolfgang R. Habel ◽  
...  

Author(s):  
Ismael Payo ◽  
J. L. Polo ◽  
Blanca Lopez ◽  
Diana Serrano ◽  
Antonio M. Rodríguez ◽  
...  

Abstract Conductive Hydrogels are soft materials which have been used by some researchers as resistive strain sensors in the last years. The electrical resistance change, when the sensor is stretched or compressed, is usually measured by the two-electrode method. This method is not always suitable to measure the electrical resistance of polymers-based materials, like hydrogels, because it could be highly influenced by the electrode/sample interface, as explained in this study. For this reason, a signal conditioning circuit, based on four-electrode impedance measurements, is proposed to measure the electrical resistance change when the gel is stretched or compressed. Experimental results show that the tested gels can be used as resistance force/pressure sensors with a quite linear behaviour.


2021 ◽  
Author(s):  
Maarten Soudijn ◽  
Sebastiaan van Rossum ◽  
Ane de Boer

<p>In this paper we present weight measurements of urban heavy traffic comparing two different Weigh In Motion (WIM) systems. One is a WIM-ROAD system using Lineas quartz pressure sensors in the road surface. The other is a WIM-BRIDGE system using optical fibre-based strain sensors which are applied under the bridge to the bottom fibre of a single span of the bridge deck. We have designed our tests to determine which system is most suited to Amsterdam. We put special focus on the accuracy that each system can achieve and have set up an extensive calibration program to determine this. Our ultimate goal is to draw up a realistic traffic load model for Amsterdam. This model would lead to a recommendation that can be used to re- examine the structural safety of existing historic bridges and quay walls, in addition to the current traffic load recommendations.</p>


Author(s):  
Hong-Nan Li ◽  
Dong-Sheng Li ◽  
Su-Yan Wang

In civil engineering, the smart health monitoring method by use of fiber optic sensor is a new approach that evaluates the structural health situation. The current status in applications of fibre optic structural health monitoring in civil engineering structures with a brief introduction of the advantages, basic principles of fibre optic sensors is described in this paper. Leakage detection and potential damage to pipelines are emphasized. Finally, existing problems for packing and implementing fibre optic sensors in structures are discussed.


2015 ◽  
Vol 825-826 ◽  
pp. 741-748
Author(s):  
Stefan Betz ◽  
Fabian Köster ◽  
Vasileios Ramopoulos

Process time reduction and energy/cost savings are usually in the focus of production process improvements. New technologies provide possibilities to achieve significant enhancements for relevant operation figures.Curing cycle times for CFRP manufacturing depend on several requirements: Type of resin, requested glass transition temperature, used equipment and energy source as well as sample size, weight, fibre volume ratio, fibre orientation etc. Conventional methods are mostly based on heat conduction while microwaves offer a selective and volumetric heating of the samples. Process time reduction and energy saving are the positive effects of the microwave curing technology.This paper will give an overview of the current status of this process technology not only focussing on technical aspects but also covering the process and economic effects.This work has been performed under the German BMBF project 02PJ2131, FLAME under the program Energy Efficient Light Weight Construction.


2009 ◽  
Author(s):  
Wolfgang R. Habel ◽  
Ingolf Baumann ◽  
Francis Berghmans ◽  
Krzysztof Borzycki ◽  
Christoph Chojetzki ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document