Steady Drift of Floating Objects in Waves: Experimental and Numerical Investigation

Author(s):  
Marc Le Boulluec ◽  
Bertrand Forest ◽  
Emmanuel Mansuy

Various objects, such as containers and barrels lost from cargo and container ships, can drift at sea. When remaining afloat they can be dangerous obstacles to navigation and in any case a danger for environment. The description of their probable trajectories is a key point for their location and recovery (Daniel et al, 2002). A simplified theoretical model based on the equilibrium between steady drift forces and viscous drag forces is proposed to calculate the steady drift velocity in waves only, without effect of wind nor current. Several comparisons with experimental results obtained from trials in a wave tank are given for cylindrical and box shaped objects.

2020 ◽  
Vol 14 (4) ◽  
pp. 7396-7404
Author(s):  
Abdul Malek Abdul Wahab ◽  
Emiliano Rustighi ◽  
Zainudin A.

Various complex shapes of dielectric electro-active polymer (DEAP) actuator have been promoted for several types of applications. In this study, the actuation and mechanical dynamics characteristics of a new core free flat DEAP soft actuator were investigated. This actuator was developed by Danfoss PolyPower. DC voltage of up to 2000 V was supplied for identifying the actuation characteristics of the actuator and compare with the existing formula. The operational frequency of the actuator was determined by dynamic testing. Then, the soft actuator has been modelled as a uniform bar rigidly fixed at one end and attached to mass at another end. Results from the theoretical model were compared with the experimental results. It was found that the deformation of the current actuator was quadratic proportional to the voltage supplied. It was found that experimental results and theory were not in good agreement for low and high voltage with average percentage error are 104% and 20.7%, respectively. The resonance frequency of the actuator was near 14 Hz. Mass of load added, inhomogeneity and initial tension significantly affected the resonance frequency of the soft actuator. The experimental results were consistent with the theoretical model at zero load. However, due to inhomogeneity, the frequency response function’s plot underlines a poor prediction where the theoretical calculation was far from experimental results as values of load increasing with the average percentage error 15.7%. Hence, it shows the proposed analytical procedure not suitable to provide accurate natural frequency for the DEAP soft actuator.


2015 ◽  
Vol 23 (21) ◽  
pp. 27376 ◽  
Author(s):  
Mitradeep Sarkar ◽  
Jean-François Bryche ◽  
Julien Moreau ◽  
Mondher Besbes ◽  
Grégory Barbillon ◽  
...  

Author(s):  
Shivanand M. Teli ◽  
Channamallikarjun S. Mathpati

AbstractThe novel design of a rectangular external loop airlift reactor is at present the most used large-scale reactor for microalgae culture. It has a unique future for a large surface to volume ratio for exposure of light radiation for photosynthesis reaction. The 3D simulations have been performed in rectangular EL-ALR. The Eulerian–Eulerian approach has been used with a dispersed gas phase for different turbulent models. The performance and applicability of different turbulent model’s i.e., K-epsilon standard, K-epsilon realizable, K-omega, and Reynolds stress model are used and compared with experimental results. All drag forces and non-drag forces (turbulent dispersion, virtual mass, and lift coefficient) are included in the model. The experimental values of overall gas hold-up and average liquid circulation velocity have been compared with simulation and literature results. It is seemed to give good agreements. For the different elevations in the downcomer section, liquid axial velocity, turbulent kinetic energy, and turbulent eddy dissipation experimental have been compared with different turbulent models. The K-epsilon Realizable model gives better prediction with experimental results.


2005 ◽  
Vol 18 (3) ◽  
pp. 156-162 ◽  
Author(s):  
E. Fraś ◽  
K. Wiencek ◽  
M. Górny ◽  
H. F. López

2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


Sign in / Sign up

Export Citation Format

Share Document