Numerical Investigation on Dynamic Performance of a Multi-storey Steel Structure Model and Comparison with Experimental Results

Author(s):  
Tomasz Falborski ◽  
Barbara Sołtysik ◽  
Robert Jankowski
2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lin Hong ◽  
Renjie Fang ◽  
Xiaotian Cai ◽  
Xin Wang

This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs.


2021 ◽  
Vol 6 (19) ◽  
pp. 140-143
Author(s):  
Tho Vu Quang ◽  
Hong Trinh Thi ◽  
Thanh Truong Tien

The decays of the Higgs boson H_1→Z_γ are discussed in the simplest 3-3-1 model. Analytic formulas for one-loop contributions were constructed using well-known general results. We will show that new particles predicted by this simplest 3-3-1 model may gice significant effects to this decay of the standard model-like Higgs boson. From numerical investigation, some details and properties of this decay are presented. the may be useful for comparing with the experimental results that will be detected in the future.


2006 ◽  
Vol 326-328 ◽  
pp. 1585-1588
Author(s):  
B.J. Shi ◽  
Dong Wei Shu ◽  
J. Luo ◽  
Q.Y. Ng ◽  
J.H.T. Lau

Hard disk drives (HDD) are now the most important means of information storage, and they continue to be made smaller in size, higher in capacity, and lower in cost. The dynamic performance of an HDD has been an increasingly important consideration for its design, as we move forward toward its consumer applications. The dynamic properties of the head arm assembly (HAA) of a micro-drive were investigated using both experimental and numerical techniques. A finite element model for studying the dynamic property of the HAA was created and modified according to the experimental results. Good correlation between the experimental results and those by finite element simulation was achieved.


Friction ◽  
2020 ◽  
Author(s):  
Yongpeng Gu ◽  
Xudong Lan ◽  
Gexue Ren ◽  
Ming Zhou

Abstract This paper presents an efficient three-dimensional (3D) structural model for bump-type gas foil bearings (GFBs) developed by considering friction. The foil structures are modeled with a 3D shell finite element model. Using the bump foil mechanical characteristics, the Guyan reduction and component mode synthesis methods are adopted to improve computational efficiency while guaranteeing accurate static responses. A contact model that includes friction and separation behaviors is presented to model the interactions of the bump foil with the top foil and bearing sleeve. The proposed structural model was validated with published analytical and experimental results. The coupled elastohydrodynamics model of GFBs was established by integration of the proposed structural model with data on hydrodynamic films, and it was validated by comparisons with existing experimental results. The performance of a bearing with an angular misalignment was studied numerically, revealing that the reaction torques of the misaligned bearing predicted by GFB models with 2D and 3D foil structure models are quite different. The 3D foil structure model should be used to study GFB misalignment.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986156
Author(s):  
Fengyu Xu ◽  
Quansheng Jiang ◽  
Lina Rong ◽  
Pengfei Zhou ◽  
Jinlong Hu

Bending is an important procedure for processing sheet metals, while it is a key link in the realization of automatic processing of sheet metal. To improve the efficiency and accuracy of bending processing, this article proposed a structure model and a prototype of a six-axis Cartesian coordinate robot for sheet metal bending to replace workers completing automatic bending processes. Based on the analysis of overall structure schemes of the robot, kinematic simulation is conducted by using the automatic dynamic analysis of mechanical system (ADAMS). Furthermore, the dynamic performance of the structural model of the robot for sheet metal bending is analysed and design optimization is performed. A prototype of the robot based on the optimal structural model of six-axis Cartesian coordinate robot for sheet metal bending is made. Finally, under the work conditions, the efficiencies and accuracies of sheet metal bending by a worker and the robot are compared and tested. The structural model of six-axis Cartesian coordinate robot for sheet metal bending presented in this article is found to be applicable to sheet metal bending robot and improves the stability of sheet metal bending machine. The laboratory testing and experimental results verified the feasibility of the proposed robot.


Author(s):  
Gray C. Thomas ◽  
Clayton C. Gimenez ◽  
Erica D. Chin ◽  
Andrew P. Carmedelle ◽  
Aaron M. Hoover

This paper presents the design and experimental characterization of a continuously variable linear force amplifier based on the theory of capstans. In contrast to traditional capstan amplifiers, the design presented here uses an elastic cable, enabling a control actuator to not only continuously clutch output to a rotating drum but also passively declutch by releasing tension. Our experimental results demonstrate successful declutching at all force amplification ratios up to the limit of our experimental apparatus, 21 — significantly higher than previously published values. A system of distributed capstan amplifiers driven by a central torque source with cable engagement switched by lightweight, low torque actuators has potential to reduce the mass of distal actuators and enable more dynamic performance in robotic applications.


2012 ◽  
Vol 152-154 ◽  
pp. 770-774
Author(s):  
Li Jun Zhang ◽  
Jie Qiong Xue ◽  
Sheng Dun Zhao ◽  
Yong Rui Zhao

In order to solve the narrow range and control difficulties of the excited frequency in metal bar cropping with variable frequency vibration, the structure of the eccentric block in cropping machine was improved on in the paper and a new structure model of changing the integral eccentric block into one of main eccentric block and some small adjustable eccentric blocks, was also proposed. The key parameters of the cropping machine in the action of two different types of eccentric blocks were analyzed theoretically in detail. At the same time, the corresponding amplitude frequency characteristics of the cropping machine were also obtained. The cropping experimental results of 45 steel bar show that the cross-section quality and the cropping time are improved remarkably in the action of one main eccentric block and four adjustable eccentric blocks, comparing with the cropping results in the action of the whole eccentric block.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
E. Burberi ◽  
D. Massini ◽  
L. Cocchi ◽  
L. Mazzei ◽  
A. Andreini ◽  
...  

Increasing turbine inlet temperature is one of the main strategies used to accomplish the demand for increased performance of modern gas turbines. Thus, optimization of the cooling system is becoming of paramount importance in gas turbine development. Leading edge (LE) represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point, and the unfavorable geometrical characteristics for cooling purposes. This paper reports the results of a numerical investigation, carried out to support a parallel experimental campaign, aimed at assessing the rotation effects on the internal heat transfer coefficient (HTC) distribution in a realistic LE cooling system of a high pressure blade. Experiments were performed in static and rotating conditions replicating a typical range of jet Reynolds number (10,000–40,000) and Rotation number (0–0.05). The experimental results consist of flowfield measurements on several internal planes and HTC distributions on the LE internal surface. Hybrid RANS–large eddy simulation (LES) models were exploited for the simulations, such as scale adaptive simulation and detached eddy simulation, given their ability to resolve the complex flowfield associated with jet impingement. Numerical flowfield results are reported in terms of both jet velocity profiles and 2D vector plots on two internal planes, while the HTC distributions are presented as detailed 2D maps together with averaged Nusselt number profiles. A fairly good agreement with experiments is observed, which represents a validation of the adopted modeling strategy, allowing an in-depth interpretation of the experimental results.


2012 ◽  
Vol 529 ◽  
pp. 180-185
Author(s):  
Qing Lei Zhang ◽  
Hai Ou Shen ◽  
Bai Yu Zhao ◽  
Jing Kuan Guo

Dynamic performance of high speed dynamic balancing machine directly affects the accuracy and safety of dynamic balancing machine. ANSYS 12.0 was used to establish the frame structure model in this paper. The four models of dynamic balancing machine were calculated respectively. The calculation results show that additional stiffness can greatly improve the natural frequencies of dynamic balancing machine. In addition, as the base is large, we can ignore the influence on natural frequencies caused by the base.


Sign in / Sign up

Export Citation Format

Share Document