Direct Design of Large Ice Class Ships With Emphasis on the Midbody Ice Belt

Author(s):  
Claude Daley ◽  
Andrew Kendrick

The future development of oil and gas reserves in remote Polar Regions areas will require a new generation of highly ice-capable vessels. Many may need to be capable of operating at all times of the year. These ships will need to be able to travel faster in heavy ice than all but the largest icebreakers, which poses challenges for both hull and machinery design. The American Bureau of Shipping (ABS), BMT Fleet Technology Limited (BMT) and Hyundai Heavy Industries (HHI) are currently undertaking a joint project aimed at addressing these design challenges. Because of the unique and innovative aspects of large fast ships for Polar ice development, new methodologies for direct calculation of loads on all areas of the hull are needed. The project is also addressing the need for new techniques for the analysis of the outer hull, double hull and gas containment systems of these ships under design and accidental loads; areas in which ‘rule design’ can only provide a starting point. This paper focuses on the midbody ice loads that may results from both ice pressures and from glancing collisions in the midbody area. The paper highlights some of the challenges of direct design.

2000 ◽  
Vol 36 (2) ◽  
pp. 93-96
Author(s):  
O. P. Lykov ◽  
S. A. Nizova ◽  
S. P. Valueva ◽  
M. A. Silin ◽  
E. E. Yanchenko

2021 ◽  
Author(s):  
Lilibeth Chiquinquira Perdomo ◽  
Carlos Alvarez ◽  
Maria Edith Gracia ◽  
Guillermo Danilo Salomone ◽  
Gilberto Ventuirini ◽  
...  

Abstract As other companies registered in the US stock market, the company reports oil and gas reserves, in compliance with the definitions of the Securities and Exchange Commission (SEC). In addition, it complies internally with the guidelines established by the Petroleum Resources Management System to certify its resources. The PRMS focuses on supporting consistent evaluation of oil resources based on technically sound industry practices, providing fundamental principles for the assessment and classification of oil reserves and resources, but does not provide specific guidance for the classification and categorization of quantities associated with IOR projects. Recently, the company has implemented EOR pilot projects, and their results seem to show commerciality for future development or expansion to new areas, displaying multiple opportunities and proposals to incorporate reserves and resources. So far, the pilot projects and their expansions have been addressed only from the point of view of incremental projects, as an improvement over the previous secondary recovery. The company does not have sufficient track record in booking reserves or resources from EOR projects, their quantities have been incorporated following bibliographic references and results of EOR projects with proven commerciality around the world. For this reason, the need arose to have a tool that provides the company with methodological criteria to evaluate the resources and reserves inherent in this type of project, that incorporate the "best practices" of the industry and that respect the guidelines and definitions of PRMS for incremental projects. That was how, the need to meet this challenging goal led company to develop its "EOR Resources and Reserves Assessment Guide" with the advice of a renowned consulting company. Although the Guide is not intended to be a review of the large body of existing IOR literature, it contains several useful references that serve as a starting point for understanding the IOR project for assessment process of resources and reserves. This document shows the process of development and implementation of the EOR guide, complementing the existing guides within the corporation and providing the company with a positive result within the internal processes of Audit, reserves and resources for this type of projects.


2016 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Annalie Botha ◽  
Ina Joubert ◽  
Anna Hugo

A new generation of children are learning the importance of democratic values at a level which makes sense to them. Appropriate ‘democratic values’ for South Africa are set out in the Constitution, and the national curriculum aims to equip all learners with the knowledge and skills necessary for meaningful participation in society. In many schools, these values – responsibility, respect and the freedom of self-expression – are merely posted on the walls of classrooms, but are not integrated into the subject content. This article proposes that teachers need to determine children’s perceptions of the values in question, and these should be the starting point for teaching democratic values. Young children need to understand and experience values in the classroom, suitable to the development of their moral reasoning. To concretise concepts of values, we used the ‘pledge tree’ activity in an intervention, in which 9-year-old children wrote their values on paper ‘leaves’ which they then posted on a huge polystyrene tree. The paper reports on this experience as a research investigation, capturing children’s ideas.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Daniele Sampietro ◽  
Ahmed Mansi ◽  
Martina Capponi

Airborne gravimetry represents nowadays probably the most efficient technique to collect gravity observations close to the Earth’s surface. In the 1990s, thanks to the development of the Global Navigation Satellite Systems (GNSS), which has made accurate navigational data available, this technique started to spread worldwide because of its capability to provide measurements in a fast and cost-effective way. Differently from other techniques such as shipborne gravimetry, it has the advantage to provide gravity measurements also in challenging environments which can be difficult to access otherwise, like mountainous areas, rain forests and polar regions. For such reasons, airborne gravimetry is used for various applications related to the regional gravity field modelling: from the computation of high accurate local geoid for geodetic applications to geophysical ones, specifically related to oil and gas exploration activities or more in general for regional geological studies. Depending on the different kinds of application and the final required accuracy, the definition of the main characteristics of the airborne survey, e.g., the planar distance between consecutive flight tracks, the aircraft velocity, etc., can be a difficult task. In this work, we present a new software package, which would help in properly accomplishing the survey design task. Basically, the developed software solution allows for generating a realistic (from the observation noise point of view) gravimetric signal, and, after that, to predict the accuracy and spatial resolution of the final retrievable gravimetric field, in terms of gravity disturbances, given the flight main characteristics. The proposed procedure is suited for airborne survey planning in order to be able to optimize the design of the survey according to the required final accuracy. With the aim to evaluate the influence of the various survey parameters on the expected accuracy of the airborne survey, different numerical tests have been performed on simulated and real datasets. For instance, it has been shown that if the observation noise is not properly modeled in the data filtering step, the survey results degrade about 25%, while not acquiring control lines during the survey will basically reduce the final accuracy by a factor of two.


2013 ◽  
Vol 56 (2) ◽  
Author(s):  
Giorgiana De Franceschi ◽  
Maurizio Candidi

<p>[…] The collection of papers that forms this special issue represents the whole amplitude of research that is being conducted in the framework of GRAPE, while also connecting to other initiatives that address the same objectives in regions outside the polar regions, and worldwide, such as the Training Research and Applications Network to Support the Mitigation of Ionospheric Threats (TRANSMIT; www.transmitionosphere.net), a Seventh Framework Programme (FP7) Marie Curie Initial Training Network that is focused on the study of ionospheric phenomena and their effects on systems embedded in our daily life, Near-Earth Space Data Infrastructure for e-Science (ESPAS), an FP7-funded project that aims to provide the e-Infrastructure necessary to support the access to observations, for the modeling and prediction of the near-Earth Space environment, Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America (CIGALA) and its follow-up and extension Countering GNSS High-Accuracy Applications Limitations due to Ionospheric Disturbances in Brazil (CALIBRA), both of which are funded by the European Commission in the frame of FP7, for facing the equatorial ionosphere and its impact on GNSS. The main objective of the present Special Issue of Annals of Geophysics is to collect recent reports on work performed in the polar regions and on the datasets collected in time by the instrumentation deployed across various countries. This collection will set the starting point for further research in the field, especially in the perspective of the new and very advanced space system that will be available in the next few years. […]</p>


2009 ◽  
Vol 9 (2) ◽  
pp. 6691-6737 ◽  
Author(s):  
S. Massart ◽  
C. Clerbaux ◽  
D. Cariolle ◽  
A. Piacentini ◽  
S. Turquety ◽  
...  

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) is one of the five European new generation instruments carried by the polar-orbiting MetOp-A satellite. Data assimilation is a powerful tool to combine these data with a numerical model. This paper presents the first steps made towards the assimilation of the total ozone columns from the IASI measurements into a chemistry transport model. The IASI ozone data used are provided by an inversion of radiances performed at the LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales). As a contribution to the validation of this dataset, the LATMOS-IASI data are compared to a four dimensional ozone field, with low systematic and random errors compared to ozonesondes and OMI-DOAS data. This field results from the combined assimilation of ozone profiles from the MLS instrument and of total ozone columns from the SCIAMACHY instrument. It is found that on average, the LATMOS-IASI data tends to overestimate the total ozone columns by 2% to 8%. The random observation error of the LATMOS-IASI data is estimated to about 6%, except over polar regions and deserts where it is higher. Using this information, the LATMOS-IASI data are then assimilated, combined with the MLS data. This first LATMOS-IASI data assimilation experiment shows that the resulting analysis is quite similar to the one obtained from the combined MLS and SCIAMACHY data assimilation.


2016 ◽  
Vol 30 (2) ◽  
pp. 83-112 ◽  
Author(s):  
Sergio de Cesare ◽  
Chris Partridge

ABSTRACT Modern business organizations experience increasing challenges in the development and evolution of their enterprise systems. Typical problems include legacy re-engineering, systems integration/interoperability, and the architecting of the enterprise. At the heart of all these problems is enterprise modeling. Many enterprise modeling approaches have been proposed in the literature with some based on ontology. Few however adopt a foundational ontology to underpin a range of enterprise models in a consistent and coherent manner. Fewer still take data-driven re-engineering as their natural starting point for modeling. This is the approach taken by Business Object Reference Ontology (BORO). It has two closely intertwined components: a foundational ontology and a re-engineering methodology. These were originally developed for the re-engineering of enterprise systems and subsequently evolved into approaches to enterprise architecture and systems integration. Together these components are used to systematically unearth reusable and generalized business patterns from existing data. Most of these patterns have been developed for the enterprise context and have been successfully applied in several commercial projects within the financial, defense, and oil and gas industries. BORO's foundational ontology is grounded in philosophy and its metaontological choices (including perdurantism, extensionalism, and possible worlds) follow well-established theories. BORO's re-engineering methodology is rooted in the philosophical notion of grounding; it emerged from the practice of deploying its foundational ontology and has been refined over the last 25 years. This paper presents BORO and its application to enterprise modeling.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5771
Author(s):  
Luis Manuel Quej-Ake ◽  
Jesús Noé Rivera-Olvera ◽  
Yureel del Rosario Domínguez-Aguilar ◽  
Itzel Ariadna Avelino-Jiménez ◽  
Vicente Garibay-Febles ◽  
...  

The review presented herein is regarding the stress corrosion cracking (SCC) phenomena of carbon steel pipelines affected by the corrosive electrolytes that comes from external (E) and internal (I) environments, as well as the susceptibility and tensile stress on the SCC. Some useful tools are presented including essential aspects for determining and describing the E-SCC and I-SCC in oil and gas pipelines. Therefore, this study aims to present a comprehensive and critical review of a brief experimental summary, and a comparison of physicochemical, mechanical, and electrochemical data affecting external and internal SCC in carbon steel pipelines exposed to corrosive media have been conducted. The SCC, hydrogen-induced cracking (HIC), hydrogen embrittlement, and sulfide stress cracking (SSC) are attributed to the pH, and to hydrogen becoming more corrosive by combining external and internal sources promoting cracking, such as sulfide compounds, acidic soils, acidic atmospheric compounds, hydrochloric acid, sulfuric acid, sodium hydroxide, organic acids (acetic acid, mainly), bacteria induced corrosion, cathodic polarization, among others. SCC growth is a reaction between the microstructural, chemical, and mechanical effects and it depends on the external and internal environmental sources promoting unpredictable cracks and fractures. In some cases, E-SCC could be initiated by hydrogen that comes from the over-voltage during the cathodic protection processes. I-SCC could be activated by over-operating pressure and temperature at flowing media during the production, gathering, storage and transportation of wet hydrocarbons through pipelines. The mechanical properties related to I-SCC were higher in comparison with those reviewed by E-SCC, suggesting that pipelines suffer more susceptibility to I-SCC. When a pipeline is designed, the internal fluid being transported (changes of environments) and the external environment concerning SCC should be considered. This review offers a good starting point for newcomers into the field, it is written as a tutorial, and covers a large number of basic standards in the area.


2013 ◽  
Vol 427-429 ◽  
pp. 2138-2142
Author(s):  
Liang Tian ◽  
Qi Sheng Zhang ◽  
Qi Mao Zhang

Oil and gas resource as the most important part of energysource compositionits in China, its seismic exploration and development has great significance. And this requires development of new generation of high-precision digital telemetry seismograph. Shared memory, the common telecommunication mode between Linux processes becomes the preferred interaction means between applications of seismic exploration for its controlled capacity and speedy interaction rate. This article describes the stacked power station being constructed by the embedded microprocessor PPC405 and FPGA chip, as well as the transplantation of U-boot, Kernel and file system, the development of inter-process communication application on basis of shared memory, and finally the network interaction of telemetering digital seismic power station.


Sign in / Sign up

Export Citation Format

Share Document