Study on Snap Tension in Mooring Lines of Deepwater Platform

Author(s):  
Su-xia Zhang ◽  
You-gang Tang ◽  
Hai-xiao Liu

Based on the theory of impact dynamics, the motion equations for a mooring line-floating body system after and before impact loading are established with consideration of the viscoelastic property of mooring lines. The factors that influence the taut-slack conditions of a mooring system are analyzed through classifying the taut-slack regions, which are defined by nondimensional ratios of displacement, frequency and damping of the system. The mooring lines of Jip spar platform is analyzed, and the snap tension characteristics of mooring lines are given, the factors that influence the maximum tension in mooring lines, including the mass of floating body, length of mooring lines, frequency and amplitude of external excitation, and pretension in mooring lines, are also analyzed through computing the dynamic response of system and parametric study. It is shown that the maximum tension increases with increase of the mass of floating body, external excitation and pretension and decreases with increase of the length of mooring lines, also, it is found that the influence of the nondimensional ratio of damping increases with increase of the pretension in mooring lines.

2014 ◽  
Vol 19 (Supplement_1) ◽  
pp. S69-S77 ◽  
Author(s):  
A. B. M. Saiful Islam ◽  
Mohammed Jameel ◽  
Suhail Ahmad ◽  
Mohd Zamin Jumaat ◽  
V. John Kurian

Floating spar platform has been proven to be an economical and efficient type of offshore oil and gas exploration structure in deep and ultra-deep seas. Associated nonlinearities, coupled action, damping effect and extreme sea environments may modify its structural responses. In this study, fully coupled spar–mooring system is modelled integrating mooring lines with the cylindrical spar hull. Rigid beam element simulates large cylindrical spar hull and catenary mooring lines are configured by hybrid beam elements. Nonlinear finite element analysis is performed under extreme wave loading at severe deep sea. Morison's equation has been used to calculate the wave forces. Spar responses and mooring line tensions have been evaluated. Though the maximum mooring line tensions are larger at severe sea-state, it becomes regular after one hour of wave loading. The response time histories in surge, heave, pitch and the maximum mooring tension gradually decreases even after attaining steady state. It is because of damping due to heavier and longer mooring lines in coupled spar–mooring system under deep water conditions. The relatively lesser values of response time histories in surge, heave, pitch and the maximum mooring tension under extreme wave loading shows the suitability of a spar platform for deep water harsh and uncertain environmental conditions.


2011 ◽  
Vol 137 ◽  
pp. 50-58
Author(s):  
Jin Wei Sun ◽  
Xiu Tao Fan ◽  
Xiao Zheng Wan ◽  
Shi Xuan Liu

The motion performance of Spar platform and dynamic characteristics for the mooring lines under different mooring configurations have been studied both in static analysis and coupled dynamic analysis. First, 3D hydrodynamic finite element model is built and the effects of the mooring system are taken into account by giving the specified pre-tension, angle and stiffness of the mooring lines on the fairleads. And hydrodynamic analysis of Spar platform is performed by the way of utilizing potential flow theory in frequency domain in order to calculate the hydrodynamic coefficients. Then, static analysis is applied to obtain restoring stiffness curves for the mooring system, structure displacements and mooring line tensions etc.. At last, coupled time domain analysis of the motion response of Spar is conducted for the coupled system and the dynamic tensions of mooring lines are calculated. The research results can be served as a reference for the selection and the performance study for mooring systems during preliminary design.


Author(s):  
Hiroaki Eto ◽  
Ryo Sekiguchi ◽  
Hitomi Kashima ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
...  

Abstract This paper describes the motion characteristics and cargo handling efficiency of the Large-Scale Floating Coal Transshipment Station (LFTS). Indonesia is the main country supplying coal in the Asia-Pacific region, it is important to ensure stable coal supply to Japan. Because the topography of the seabed near East Kalimantan Island, Indonesia’s main coal production area, is shallow, it is difficult for bulk carriers to reach the coast. And then, Large-scale Floating Transposition Station for Loading Coal (hereafter LFTS) was proposed, which will be used as a transposition station between small coal barge coming down the river and bulk carriers stay offshore. By installing LFTS, improvement of coal transport efficiency is expected. As a previous study, the motion characteristics of LFTS using a catenary chain in its mooring system were grasped. However, LFTS can carry up to 500,000 tons of coal, and the draft of LFTS tends to change greatly depending on the coal loading conditions. Besides, the tidal difference in the sea area where the LFTS is installed is about 2 m, and the mounting position of the mooring system on the LFTS side moves up and down by about 10 m at maximum due to changes in the draft and tidal differences. For this reason, when the mounting position of the mooring system is in the lowest state, the mooring line is loosened and the horizontal force is reduced, and it is considered that sufficient restraining force is not exhibited. And, when the mounting position of the mooring system becomes high, the mooring line tension increases and the mooring line may break in some cases. Therefore, in this study, an attempt was made to use an elastic mooring line as a mooring system for LFTS. An elastic mooring line is a mooring line that incorporates a highly stretchable material between mooring lines that connect anchors and floating body. Even if the mooring line attached to the LFTS moves up and down, an appropriate tension always acts on the elastic mooring line, and it can be expected to suppress the oscillation of the floating body and prevent the mooring line from breaking due to excessive tension. However, elastic mooring lines are mainly used for mooring small structures such as piers and aquaculture facilities, but there are no examples where these mooring lines have been applied to structures over 500m like LFTS. Therefore, elastic mooring lines are adopted for the mooring system of LFTS, systematically calculated according to various setting conditions of elastic mooring lines, and it is grasped whether elastic mooring lines can be applied to LFTS, and the motion characteristics of LFTS moored by elastic mooring lines was also grasped.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


Author(s):  
Vincenzo Nava ◽  
Marin Rajic ◽  
Carlos Guedes Soares

The aim of this paper is to study the dynamics of a floating body with characteristics comparable to a point absorber wave energy converter with different mooring systems, in geometrical configuration or in the materials. To this purpose, the dynamics of a moored buoy is investigated. The point absorber is modeled as a spherical buoy in plane two-dimensional motion, and it is studied under the action of irregular unidirectional wind-generated waves, moored to the seabed by means of one, two or three mooring lines. Two different sets of moorings are considered, and typical wires and chains used in offshore technology are considered, leading to a total of 6 case studies. A quasi-static approach is used for modeling the restoring forces needed to keep buoy into station, using an innovative iterative procedure able to predict for each time instant and for each cable the lay down length of the cable, being each mooring line allowed to be taut or slack. Approaches in the time and frequency domains are used to obtain the system responses in intermediate waters, where these facilities are usually installed. Results for all case studies are compared both in terms of statistics of response and tensions on the top of the cable.


Author(s):  
Gang Zou ◽  
Lei Wang ◽  
Feng Zhang

As the offshore industry is developing into deeper and deeper water, station keeping technics are becoming more and more important to the industry. Based on the dynamic positioning system, the thruster assisted mooring system (TAMS) is developed, which consisted of mooring lines and thrusters. The main function of the TAMS is to hold a structure against wind wave and current loads with its thruster and cables, which is mainly evaluated by the holding capacity of the system. The arrangement of the mooring lines (location of anchor or the mooring line angle relative to platform) will directly affect the TAMS holding capacity because of the influence of the directions of the mooring forces. So finding out an optimum arrangement of the mooring lines is essential since the performance of the TAMS depends greatly on the arrangement of the mooring lines. The TAMS of a semi-submersible platform, which is studied in this paper, consisted of eight mooring lines. By fixing the layout of the thrusters and changing the location of each mooring line for every case, the performances of the TAMS are analyzed. The platform motions, mooring line tensions and power consumptions are compared to obtain the optimum arrangement of mooring lines, and thus a thruster assisted mooring system with a better performance can be achieved. Time domain simulation is carried out in this paper to obtain the results.


Author(s):  
Zhuang Kang ◽  
Rui Chang ◽  
Youwei Kang ◽  
Shanchuan Liu

Abstract The taut mooring system is widely used for some advantages, such as smaller mooring radius, lighter total weight and better anti-corrosion performance. In this paper, the taut mooring system of a Truss Spar platform which was taken as the research object was investigated under the condition of 2000 m water depth in South China Sea. Firstly, the main body of the platform was analyzed in frequency domain based on the 3-d potential theory, and then the nonlinear solutions of platform displacement and mooring line force were obtained by using coupling analysis method in time domain, which determined the preliminary design parameters of mooring system. The sensitivity of the taut system is studied by changing several design parameters such as the top angle of mooring line, cable hole position and method of mooring disposal. In summary, the variation of the motion and dynamic response of the platform and mooring system has been explored and summarized by studying the design process and influential parameter of dynamic characteristics of mooring system and optimizing ideas of relevant parameters, which can further provide technical support and engineering reference for the design and application of the taut mooring system of deepwater Truss Spar platforms.


Author(s):  
Xuliang Han ◽  
ShiSheng Wang ◽  
Bin Xie ◽  
Wenhui Xie ◽  
Weiwei Zhou

In order to predict the coupled motion and external wave load for the design of deepwater floating structure system, based on the three-dimensional time-domain potential flow theory, this paper present the indirect time-domain dynamic coupling method and the body nonlinear dynamic coupling method. The perturbation expansion theory is adopted to evaluate hydrodynamic on the fixed mean wetted body surface for the former method. The transient free surface Green function has been extended and applied to calculate the nonlinear hydrodynamic on the instantaneous wetted exact body surface for the latter method. The finite element model is employed to solve dynamic response of mooring line. Then asynchronous coupled method is adopted to achieve the coupled dynamic analysis of platform and mooring lines. The time-domain motion responses and spectrum analysis of Spar platform are verified and compared with the traditional indirect time-domain coupling dynamic method when the mooring system is completed. Also the time-domain motion responses and statistical characteristic of Spar platform are investigated with one mooring line broken in extreme sea condition. Some conclusions are obtained, that is, dynamic coupling effects are significant and transient position hydrodynamic calculation of platform has a great influence on the low frequency motion. The results also show that the influence on the global performance of mooring system is different when the broken line is in different place. A remarkable influence occurs when the broken mooring line is in the head-wave direction.


Author(s):  
Adinarayana Mukkamala ◽  
Partha Chakrabarti ◽  
Subrata K. Chakrabarti

The new parallel Tacoma Narrows Bridge being constructed by Tacoma Narrows Constructors will be mounted on two towers and these towers in turn will be supported by reinforced concrete caissons referred to as East Caisson (Tacoma side) and West Caisson (Gig Harbor side). Each Caisson is towed to the location and several stages of construction will take place at the actual site. During construction, the floating caissons will be moored in place to hold it against the flood and ebb currents in the Narrows. During the mooring system design, a desired pretension is established for the lines at each draft. However, due to practical limitations in the field some variations to this design pretension value may be expected. It is important to study the effect of this variation on the overall performance of the mooring system. In this paper, the sensitivity of the mooring line pretension on the overall performance of the mooring system for the above caisson is presented. During this study, all the variables that affect the mooring system design such as mooring system layout, mooring line makeup, anchor positions, fairlead departure angles, and fairlead locations are kept constant. The only variable changed is the pretension of the mooring lines. Two approaches for defining the variations in the pretension have been studied in this paper. In the first approach, the pretension is changed in a systematic way (predicted approach). In the second method the pretension is changed randomly. The latter is considered more likely to occur in the field for this type of complex mooring system. Both sets of results are presented for some selected drafts attained by the caisson during its construction. The difference in the results from the two methods is discussed.


Sign in / Sign up

Export Citation Format

Share Document