Feasibility of Using Stress Joint in an Existing Flexible Joint Receptacle for a Deepwater SCR

Author(s):  
Basim Mekha ◽  
Alok Kumar ◽  
Mike Stark ◽  
Paul Barnett

In recent years, most fluid produced or exported has been transported using steel catenary risers (SCRs) attached to deepwater floating structures. The SCRs are terminated at the floating structures using Top Termination Units (TTUs) such as flexible joints or tapered stress joints. The flexible joints are usually designed to allow the riser to rotate with the floating structure motion and reduce the amount of moments transferred to the hull structure. The flexible joints depend on the flexibility and compressibility of the elastomer layers to allow for the rotation of the SCR. The stress joints, alternatively, provide fixed support at the hull and thus larger bending moment that has to be accounted for in the hull design. The stress joints can be made of steel or titanium material. The SCR TTU’s receptacle, which will be welded to the hull porch and contains the TTU basket, has to be designed to meet the force and reaction requirements associated with the selected TTU type. However, in some cases which could be due to failure of the TTU to meet the expected life or the operational requirements, the operators may have to replace the damaged TTU with another one or with a different TTU type. A few examples are available in the Gulf of Mexico. Recently the Flexible Joint TTU of the Independent Hub 20-inch export SCR had an operational problem. During the course of investigating the related issues and studying possible solutions, one option considered was the feasibility of replacing the Flexible Joint (FJ) with Titanium Tapered Stress Joint (TSJ). This paper highlights the issues that have to be considered in the design of the FJ existing receptacle to accommodate the force reactions of a Titanium TSJ. These issues are addressed and the results of the detailed finite element analysis performed are provided. The analysis conclusions, which are related to the feasibility of the existing receptacle to receive the loads imposed by TSJ and the modifications required to achieve this, are presented.

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 95
Author(s):  
Ming Xu ◽  
Cheng Rong ◽  
Long He

Spiders rely on a hydraulic system to stretch their legs but use muscles to make their legs flex. The compound drive of hydraulics and muscle makes an integrate dexterous structure with powerful locomotion abilities, which perfectly meets the primary requirements of advanced robots. Inspired by this hydraulics-muscle co-drive joint, a novel flexible joint actuator was proposed and its driving characteristics were preliminarily explored. The bio-inspired flexible joint manifested as a double-constrained balloon actuator, which was fabricated by the composite process of 3D printing and casting. To evaluate its performance, the mathematical model was deduced, as well as the finite element analysis (FEA) model. A series of experiments on the rotation angles, driving forces, and efficiencies of the flexible joint were carried out and compared with the mathematical calculations and FEA simulations. The results show that the accuracy of the two theoretical models can be used to assess the joint actuator. The locomotion test of a soft arthropod robot with two flexible joints was also implemented, where the moving speed reached 22 mm/s and the feasibility of the proposed flexible joint applied to a soft robot was demonstrated.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad Ali Badamchizadeh ◽  
Iraj Hassanzadeh ◽  
Mehdi Abedinpour Fallah

Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.


2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


2005 ◽  
Vol 05 (01) ◽  
pp. 89-103 ◽  
Author(s):  
K. RAMAKRISHNA ◽  
I. SRIDHAR ◽  
S. SIVASHANKER ◽  
V. K. GANESH ◽  
D. N. GHISTA

A major concern when a fractured bone is fastened by stiff-plates to the bone on its tensile surface is excessive stress shielding of the bone. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays bone healing. Likewise, the tensile stress shielding of the healed bone underneath the plate also does not enable it to recover its tensile strength. Initially, the effect of a uniaxial load and a bending moment on the assembly of bone and plate is investigated analytically. The calculations showed that the screws near the fracture site transfers more load than the screws away from the fracture site in axial loading and it is found that less force is required when the screw is placed near to fracture site than the screw placed away from the fracture site to make the bone and plate bend with same radius of curvature when subjected to bending moment. Finally, the viability of using a stiffness graded bone-plate as a fixator is studied using finite element analysis (FEA): the stiffness-graded plate cause less stress-shielding than stainless steel plate.


1998 ◽  
Vol 42 (03) ◽  
pp. 174-186
Author(s):  
C. J. Garrison

A method is presented for evaluation of the motion of long structures composed of interconnected barges, or modules, of arbitrary shape. Such structures are being proposed in the construction of offshore airports or other large offshore floating structures. It is known that the evaluation of the motion of jointed or otherwise interconnected modules which make up a long floating structure may be evaluated by three dimensional radiation/diffraction analysis. However, the computing effort increases rapidly as the complexity of the geometric shape of the individual modules and the total number of modules increases. This paper describes an approximate method which drastically reduces the computational effort without major effects on accuracy. The method relies on accounting for hydrodynamic interaction effects between only adjacent modules within the structure rather than between all of the modules since the near-field interaction is by far the more important. This approximation reduces the computational effort to that of solving the two-module problem regardless of the total number of modules in the complete structure.


2021 ◽  
Author(s):  
Shunka C. Hirao ◽  
Jun Umeda ◽  
Kentaroh Kokubun ◽  
Toshifumi Fujiwara

Abstract National Maritime Research Institute, NMRI, had been studying the analytical method on safety assessments of floating power generation facilities for ten years more. As a part of these studies, an Ocean Thermal Energy Conversion (OTEC) was also studied in our institute. The OTEC normally has a very long and thick Cold-Water Pipe (CWP) with an unanchored end to pump up a large amount of cold-water continuously. From the viewpoints of the safety assessments of the OTEC operation, it is noteworthy to confirm the effect of the existing long pipe against a floating unit/body and an effect of internal flowing water. It is necessary, moreover, to consider the Vortex Induced Vibration (VIV) effect for floater motions and structural analysis of the pipe itself and a connecting point of the floating structure. In this paper, the results of model tests and numerical simulations of a spar type floating OTEC with a single CWP in waves and currents are presented. The CWP model was made of material fitting the scaling law for a planned full scale OTEC. The specific and unique phenomena of the floating OTEC were confirmed from the model test results. Based on the results of the tank tests and the numerical simulations, we confirmed the necessary items and arrangements for safety evaluations. In detail, the internal flow increased the bending moment at the connection point.


Author(s):  
Huilong Ren ◽  
Yifu Liu ◽  
Chenfeng Li ◽  
Xin Zhang ◽  
Zhaonian Wu

There is an increasing interest in the lightweight design of ship and offshore structures, more specifically, choosing aluminum alloys or other lightweight high-performance materials to build structure components and ship equipments. Due to its better mechanical properties and easy assembly nature, extruded aluminum alloy stiffened plates are widely used in hull structures. When the load on the hull reaches a certain level during sailing, partial or overall instability of stiffened plate makes significant contribution in an event of collapse of the hull structure. It is very necessary to investigate the ultimate strength of aluminum alloy stiffened plate to ensure the ultimate bearing capacity of large aluminum alloy hull structure. Most of studies of the ultimate strength of stiffened plates deal with stiffened plates with T–shaped stiffeners. Stiffeners of other shapes have seldom been explored. In this research, the ultimate strength of six different cross–section aluminum alloy stiffened plates and one steel stiffened plate was studied based on the non–linear finite element analysis (FEA). Taking into account stiffness, weight and other issues, the new cross–section aluminum stiffener has finally been concluded for replacing the original steel stiffener in upper deck of a warship.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Van Binh Phung ◽  
Anh Tuan Nguyen ◽  
Hoang Minh Dang ◽  
Thanh-Phong Dao ◽  
V. N. Duc

The present paper analyzes the vibration issue of thin-walled beams under combined initial axial load and end moment in two cases with different boundary conditions, specifically the simply supported-end and the laterally fixed-end boundary conditions. The analytical expressions for the first natural frequencies of thin-walled beams were derived by two methods that are a method based on the existence of the roots theorem of differential equation systems and the Rayleigh method. In particular, the stability boundary of a beam can be determined directly from its first natural frequency expression. The analytical results are in good agreement with those from the finite element analysis software ANSYS Mechanical APDL. The research results obtained here are useful for those creating tooth blade designs of innovative frame saw machines.


2018 ◽  
Vol 55 (5) ◽  
pp. 720-735 ◽  
Author(s):  
Yi Rui ◽  
Mei Yin

Thermo-active diaphragm walls that combine load bearing ability with a ground source heat pump (GSHP) are considered to be one of the new technologies in geotechnical engineering. Despite the vast range of potential applications, current thermo-active diaphragm wall designs have very limited use from a geotechnical aspect. This paper investigates the wall–soil interaction behaviour of a thermo-active diaphragm wall by conducting a thermo-hydro-mechanical finite element analysis. The GSHP operates by circulating cold coolant into the thermo-active diaphragm wall during winter. Soil contraction and small changes in the earth pressures acting on the wall are observed. The strain reversal effect makes the soil stiffness increase when the wall moves in the unexcavated side direction, and hence gives different trends for long-term wall movements compared to the linear elastic model. The GSHP operation makes the wall move in a cyclic manner, and the seasonal variation is approximately 0.5–1 mm, caused by two factors: the thermal effects on the deformation of the diaphragm wall itself and the thermally induced volume change of the soil and pore water. In addition, it is found that the change in bending moment of the wall due to the seasonal GSHP cycle is caused mainly by the thermal differential across the wall during the winter, because the seasonal changes in earth pressures acting on the diaphragm wall are very limited.


Sign in / Sign up

Export Citation Format

Share Document