Crushing Tests of Flowlines Internal Layers: An Experimental Approach via Optical Motion Capture and Image Processing

Author(s):  
Andre´ L. C. Fujarra ◽  
Rodolfo T. Gonc¸alves ◽  
Celso P. Pesce ◽  
Marcelo R. Silva ◽  
Carlos A. F. Godinho

New optical measurement approach for crushing tests of flow lines internal layers is detailed, based on an accurate tracking of the deformed carcass section through image processing. The results are compared to those from standard procedures based on discrete measurements using calipers. The new approach shows to be not only appropriate for the standard measurement requirements but also enables a comprehensive understanding of the crushing behavior.

2011 ◽  
Author(s):  
Rafael Loureiro Tanaka ◽  
Rodolfo Trentin Gonalves ◽  
Teófilo Barbosa Ferreira ◽  
Guilherme Feitosa Rosetti ◽  
Celso Pupo Pesce ◽  
...  

Author(s):  
Hiroshi Nishizawa ◽  
Satoshi Fujita ◽  
Osamu Furuya

In order to clarify the destruction mechanism of large structures in large seismic movements, a non-contacting displacement measurement system with a three-dimensional dynamic position with high precision is required. We have developed a three-dimensional measuring system with image processing using optical motion capture technology. This system consists of light emitting markers installed on the object structure and plural high speed cameras which obtain images of markers’ movement simultaneously, to measure the dynamic position of the three dimensional spatial coordinates of the markers. In order to measure the dynamic position with high precision, we have ever developed sub-pixel processing method which is able to measure very small displacements of the markers by analyzing the luminance distribution. Moreover, we have developed a new marker of spherical surface emission type which formed the luminance profile to improve furthermore the accuracy in rotational movement. Shaking tests were carried out with this measuring system and the results indicated that this system using new markers had sufficient accuracy within errors of a few millimeters in the structure of a 4 meter cube. Consequently, we have acquired the potential to apply to the measurement to the 3-D Full Scale Earthquake Testing Facility (E-Defense).


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2869
Author(s):  
Jiaen Wu ◽  
Kiran Kuruvithadam ◽  
Alessandro Schaer ◽  
Richie Stoneham ◽  
George Chatzipirpiridis ◽  
...  

The deterioration of gait can be used as a biomarker for ageing and neurological diseases. Continuous gait monitoring and analysis are essential for early deficit detection and personalized rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and analysis have been well explored with promising results in the literature. However, most of these studies focus on technologies for the assessment of gait characteristics, few of them have considered the data acquisition bandwidth of the sensing system. Inadequate sampling frequency will sacrifice signal fidelity, thus leading to an inaccurate estimation especially for spatial gait parameters. In this work, we developed an inertial sensor based in-shoe gait analysis system for real-time gait monitoring and investigated the optimal sampling frequency to capture all the information on walking patterns. An exploratory validation study was performed using an optical motion capture system on four healthy adult subjects, where each person underwent five walking sessions, giving a total of 20 sessions. Percentage mean absolute errors (MAE%) obtained in stride time, stride length, stride velocity, and cadence while walking were 1.19%, 1.68%, 2.08%, and 1.23%, respectively. In addition, an eigenanalysis based graphical descriptor from raw gait cycle signals was proposed as a new gait metric that can be quantified by principal component analysis to differentiate gait patterns, which has great potential to be used as a powerful analytical tool for gait disorder diagnostics.


Author(s):  
Ivan Nail-Ulloa ◽  
Sean Gallagher ◽  
Rong Huangfu ◽  
Dania Bani-Hani ◽  
Nathan Pool

This study aimed to evaluate the accuracy of 3D L5/S1 moment estimates from a wearable inertial motioncapture system during manual lifting tasks. Reference L5/S1 moments were calculated using inversedynamics bottom-up and top-down laboratory models, based on the data from a measurement systemcomprising optical motion capture and force plates. Nine groups of four subjects performed tasks consistingof lifting and lowering 10 lbs. load with three different heights and asymmetry angles. As a measure ofsystem performance, the root means square errors and absolute peak errors between models werecompared. Also, repeated measures analyses of variance were calculated comparing the means and theabsolute peaks of the estimated moments. The results suggest that most of the estimates obtained from thewireless sensor system are in close correspondence when comparing the means, and more variability isobserved when comparing peak values to other models calculating estimates of L5/S1 moments.


Author(s):  
S. Vasanth ◽  
T. Muthuramalingam

There is a quite wide range of animal leathers such as cow leather, sheep leather and buffalo leather used for leather garments and leather goods such as bags, wallets and other customized leather articles. The drawbacks of manual cutting can be eliminated by laser-based cutting. However, unwanted carbonization is happened owing to the higher thermal influence. There is no standard procedure or method available to measure the carbonization region on leather cutting. Diode lasers can process leather rapidly and efficiently. In the present work, an attempt was proposed to introduce the image processing-based measurement approach in leather cutting using CO2 laser and diode laser. The cutting experiments were performed on sheep leather with a thickness of 1 mm. It was found that the proposed can effectively measure the heat-affected zone (HAZ) of leather cutting. It has also been found that diode laser could produce lower HAZ than CO2 laser on leather cutting.


Sign in / Sign up

Export Citation Format

Share Document