Measurement of carbonization region on leather cutting in CO2 and diode laser-based laser beam process

Author(s):  
S. Vasanth ◽  
T. Muthuramalingam

There is a quite wide range of animal leathers such as cow leather, sheep leather and buffalo leather used for leather garments and leather goods such as bags, wallets and other customized leather articles. The drawbacks of manual cutting can be eliminated by laser-based cutting. However, unwanted carbonization is happened owing to the higher thermal influence. There is no standard procedure or method available to measure the carbonization region on leather cutting. Diode lasers can process leather rapidly and efficiently. In the present work, an attempt was proposed to introduce the image processing-based measurement approach in leather cutting using CO2 laser and diode laser. The cutting experiments were performed on sheep leather with a thickness of 1 mm. It was found that the proposed can effectively measure the heat-affected zone (HAZ) of leather cutting. It has also been found that diode laser could produce lower HAZ than CO2 laser on leather cutting.

2017 ◽  
Vol 37 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Aneta Bartkowska ◽  
Peter Jurči ◽  
Dariusz Bartkowski ◽  
Damian Przestacki ◽  
Mária Hudáková

AbstractThe paper presents the study results of surface condition, microstructure and microhardness of Vanadis-6 tool steel after diffusion boriding and laser modification by diode laser. As a result of diffusion boriding the layers consisted of two phases: FeB and Fe2B. A bright area under the continuous boronized layers was visible. This zone was probably rich in boron. As a result of laser surface modification of boronized layers, the microstructure composed of three zones: remelted zone, heat affected zone and the substrate was obtained. The microstructure of remelted zone consisted of boron-martensite eutectic. The depth of laser track (total thickness of remelted zone and heat affected zone) was dependent on laser parameters (laser beam power density and scanning laser beam velocity). The microhardness of laser remelting boronized layer in comparison with diffusion boronized layer was slightly lower. The presence of heat affected zone was advantageous, because it allowed to obtain a mild microhardness gradient between the layer and the substrate.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 710
Author(s):  
Michał Michalik ◽  
Jacek Szymańczyk ◽  
Michał Stajnke ◽  
Tomasz Ochrymiuk ◽  
Adam Cenian

The paper deals with the medical application of diode-lasers. A short review of medical therapies is presented, taking into account the wavelength applied, continuous wave (cw) or pulsed regimes, and their therapeutic effects. Special attention was paid to the laryngological application of a pulsed diode laser with wavelength 810 nm, and dermatologic applications of a 975 nm laser working at cw and pulsed mode. The efficacy of the laser procedures and a comparison of the pulsed and cw regimes is presented and discussed.


2001 ◽  
Vol 73 (9) ◽  
pp. 1465-1475 ◽  
Author(s):  
Roman Kaliszan ◽  
Piotr Haber ◽  
Tomasz Baczek ◽  
Danuta Siluk

The linear-solvent strength (LSS) model of gradient elution in high-performance liquid chromatography (HPLC) has been demonstrated to provide parameters of lipophilicity and acidity of analytes. pKa and log kw values are determined in three gradient runs. The first two experiments use an aqueous buffered eluent with a wide-range organic modifier gradient at pH of buffer, providing suppression of ionization of the analyte. That experiment allows an estimate of contents of the organic modifier in the mobile phase (%B), producing requested retention coefficient, k, for the nonionized form of the analyte. The next experiment is carried out with the latter %B and a pH-gradient of the aqueous component of the eluent that is sufficient to overlap possible pKa value of the analyte. The initial pH of the buffer used to make the mobile phase is selected to insure that the analyte is in nonionized form. The resulting retention time allows an estimate of pKa in a solvent of the given %B.The log kw parameter obtained correlated well with the corresponding value obtained by the standard procedure of extrapolation of retention data determined in a series of isocratic measurements. The correlation between log kw and the reference parameter of lipophilicity, log P, was very good for a series of test analytes. The values of pKa were found to correlate with the literature pKa data determined in water for a set of aniline derivatives studied.


2021 ◽  
pp. 69-71
Author(s):  
Rifat Qureishi ◽  
M.H. Usmani ◽  
U.R. Singh ◽  
P.C. Kol

Background: Fine needle aspiration cytology (FNAC) has been used for diagnosis of salivary gland lesions for many years. Various studies in the existing literature have shown a wide range of sensitivity and diagnostic accuracy of cytologic diagnosis. FNAC is a safe, simple, cost effective, 1-4 accurate and minimal invasive procedure for the evaluation of salivary gland lesions. FNAC is not only useful in planning denitive preoperative 2,5-6 diagnosis but also can prevent unnecessary surgical intervention. Salivary gland swelling occur more commonly in 3rd decade of life with equal sex incidence. Parotid is one of the most commonly involved glands in the head & neck region swellings. FNAC appears to be highly sensitive for benign tumours and highly specic for malignant tumors and it should be the rst line of investigation in evaluating the salivary gland pathologies. 7 Early diagnosis and appropriate management carries good prognosis. Methods: Patients with suspected salivary gland enlargements, referred for FNAC, were included in this study. FNAC was performed by using the standard procedure. Cytologic diagnosis was compared with histopathologic diagnosis wherever it was available. Results: In the present study conducted in the department of pathology, Shyam Shah Medical College Rewa MP, over a period of 5 years, 152 Patients with suspected salivary gland enlargements were retrospectively appraised. The benign lesions of salivary gland were 133 (87.5%), out of which Pleomorphic adenoma was diagnosed in 75 (56.39%) cases, clinical correlation was found in 58 (77.33%) cases. 29 cases were subsequently correlated with histopathological examination 26 correctly correlated and the diagnostic accuracy of FNAC was found to be 89.65%. Inammatory lesions were proved correct in 08 out of 10 cases after histopathology. Therefore, accuracy of FNAC was 80.0%. Malignant lesions of salivary gland were found in 19 cases, out of which 15 (78.94%) cases correlated with clinical diagnosis. 13 cases were subjected to histopathology 10 correctly correlated and the diagnostic accuracy of FNAC was found to be 76.92%. Overall diagnostic accuracy of FNAC was 84.61%. Conclusion:In conclusions it can be established that FNAC is an efcient and accurate procedure with high sensitivity index, and its usefulness is enhanced due to it being a relatively easy procedure which can be carried out even on outdoor patients.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Majid Amirfakhrian ◽  
Mahboub Parhizkar

AbstractIn the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.


2020 ◽  
Vol 8 (6) ◽  
pp. 5730-5737

Digital Image Processing is application of computer algorithms to process, manipulate and interpret images. As a field it is playing an increasingly important role in many aspects of people’s daily life. Even though Image Processing has accomplished a great deal on its own, nowadays researches are being conducted in using it with Deep Learning (which is part of a broader family, Machine Learning) to achieve better performance in detecting and classifying objects in an image. Car’s License Plate Recognition is one of the hottest research topics in the domain of Image Processing (Computer Vision). It is having wide range of applications since license number is the primary and mandatory identifier of motor vehicles. When it comes to license plates in Ethiopia, they have unique features like Amharic characters, differing dimensions and plate formats. Although there is a research conducted on ELPR, it was attempted using the conventional image processing techniques but never with deep learning. In this proposed research an attempt is going to be made in tackling the problem of ELPR with deep learning and image processing. Tensorflow is going to be used in building the deep learning model and all the image processing is going to be done with OpenCV-Python. So, at the end of this research a deep learning model that recognizes Ethiopian license plates with better accuracy is going to be built.


Sign in / Sign up

Export Citation Format

Share Document