Fully-Plastic J and CTOD Solutions for Pipes With Circumferential Surface Cracks Subjected to Combined Bending and Tension

Author(s):  
Lui´s F. S. Parise ◽  
Claudio Ruggieri

This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to combined bending and tensile load for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. A summary of the methodology upon which J and CTOD are derived sets the necessary framework to determine nondimensional functions h1 and h2 applicable to a wide range of crack geometries and material properties characteristic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a large set of solutions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes and cylinders subjected to bending load.

Author(s):  
Mario S. G. Chiodo ◽  
Claudio Ruggieri

This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to bending load for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. A summary of the methodology upon which J and CTOD are derived sets the necessary framework to determine nondimensional functions h1 and h2 applicable to a wide range of crack geometries and material properties characteristic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a large set of solutions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes and cylinders subjected to bending load.


Author(s):  
S. Marie ◽  
M. Ne´de´lec ◽  
C. Delaval

RCC-MRx code provides flaw assessment methodologies and related tools for Nuclear Power Plant cracked components. An important work has been made in particular to develop a large set of compendia for the calculation of the parameter J for various components (plates, pipes, elbows,…) and various defect geometries. Also, CEA in the frame of collaborations with IRSN, developed a methodology for J analytical calculation for cracked pipes and elbows submitted to thermal and combined mechanical and thermal loadings. This paper presents first the development of this methodology and an overview of the validation strategy, based on reference 2D and 3D F.E. calculations. The second part of the paper presents the last version of the MJSAM tools which is based on the 2010 version of the appendix A16 of the RCC-MRx code. All compendia (for KI, J and C* calculation) and all defect assessment procedures have been implemented in the tool: It covers crack initiation and propagation under fatigue, creep, creep-fatigue and ductile tearing situations. Sensitivity and probabilistic analyses can also been performed with this tool, directly linked to Microsoft Excel software for the results exploitation.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Masayuki Kamaya

When multiple cracks approach one another, the stress intensity factor and J-integral value change due to the interaction of the stress field. Since the changes in these parameters are not always conservative in structural reliability evaluations, the interaction between multiple cracks should be taken into account. Section XI of the ASME Boiler and Pressure Vessel Code provides a flaw characterization rule for interacting multiple cracks. In Section XI, adjacent cracks are replaced with a coalesced single crack when the distance between the cracks is less than half of the crack depth. However, the criterion for the offset distance is given as an absolute value, although the magnitude of the interaction depends on the crack size. In the current study, an alternative criterion for the offset distance was examined. Linear-elastic and elastic–plastic analyses were performed for interacting semicircular and semi-elliptical surface cracks by the finite element method under a tensile or bending load. The change in the stress intensity factors and J-integral values due to the relative spacing of cracks was investigated. Based on the relationship between the magnitude of the interaction and the relative position of the cracks, the allowable ctriterion for the offset distance was discussed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Eduard Marenić ◽  
Ivica Skozrit ◽  
Zdenko Tonković

In the present paper, calculations of the stress intensity factor (SIF) in the linear-elastic range and the J-integral in the elastoplastic domain of cracked structural components are performed by using the shell-to-solid submodeling technique to improve both the computational efficiency and accuracy. In order to validate the submodeling technique, several numerical examples are analyzed. The influence of the choice of the submodel size on the SIF and the J-integral results is investigated. Detailed finite element solutions for elastic and fully plastic J-integral values are obtained for an axially cracked thick-walled pipe under internal pressure. These values are then combined, using the General Electric/Electric Power Research Institute method and the reference stress method, to obtain approximate values of the J-integral at all load levels up to the limit load. The newly developed analytical approximation of the reference pressure for thick-walled pipes with external axial surface cracks is applicable to a wide range of crack dimensions.


Author(s):  
Masayuki Kamaya

When multiple cracks approach one another, the stress intensity factor and J-integral value of cracks are likely to change due to the interaction of the stress field. Since the changes in these parameters are not always conservative in structural reliability evaluations, the interaction between multiple cracks should be taken into account. Section XI of the ASME Boiler and Pressure Vessel Code provides a flaw characterization rule for interacting multiple cracks. In Section XI, adjacent cracks are replaced with a coalesced single crack when the distance between the cracks is less than half of the crack depth. However, the criterion for the offset distance is given as an absolute value, although the magnitude of the interaction depends on the crack size. In the current study, an alternative criterion for the offset distance was examined. Elastic-plastic analyses were performed for interacting semicircular and semi-elliptical surface cracks by the finite element method under a tensile and bending load. The change in the J-integral values due to the relative spacing of cracks was investigated. Based on the relationship between the magnitude of the interaction and the relative position of the cracks, the allowable condition for the offset distance was discussed.


1997 ◽  
Vol 32 (3) ◽  
pp. 229-236 ◽  
Author(s):  
X B Lin ◽  
R A Smith

Stress intensity factors for semi-elliptical surface cracks located at the centre of a semicircular edge notch in a finite thickness plate subjected to a remote tensile load are presented in a tabulated format. A wide range of geometry ratios are considered. They are all combinations of the following ratios: the ratio of crack surface half-length to plate half-thickness, c/t = 0.2, 0.4, 0.6, 0.8 and 0.95; the ratio of crack depth to surface half-length, a/c = 0.2, 0.4, 0.6, 0.8 and 1; and the ratio of notch radius to plate half-thickness, r/t = 0.5, 1, 2 and 3. Both the quarter-point displacement and J.-integral methods based on three-dimensional finite element analyses were employed for the calculation of stress intensity factors. The calculation accuracy was studied by analysing the J.-integral path independence and comparing stress intensity factor results with other solutions available in the literature.


Author(s):  
Lui´s F. S. Parise ◽  
Claudio Ruggieri

This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to combined bending load and internal pressure for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. The present investigation broadens the applicability of current evaluation procedures for J and CTOD which enter directly into structural integrity analyses and flaw tolerance criteria. Extensive 3-D nonlinear analyses of circumferentially cracked pipes with surface flaws having different crack depth (a) over pipe wall thickness (t) ratios and varying crack length for different strain hardening properties provide the dimensionless parameters relating the elastic-plastic crack-tip driving forces with the applied (remote) bending moment and internal pressure. The investigation provides a fairly comprehensive body of numerical solutions for J and CTOD in circumferentially cracked pipes subjected to biaxial loading.


2006 ◽  
Vol 326-328 ◽  
pp. 991-994
Author(s):  
Kenji Machida ◽  
Takanori Ueno ◽  
Hirohisa Oyama

The interior stress field of the surface crack specimen subjected to a uniform tensile load has been successfully analyzed by the 3-D local hybrid method. In this study, it was examined whether the 3-D local hybrid method was applicable to the specimen subjected to the bending load. It has been understood that the decision of the optimal size of the local model is indispensable in the improvement of accuracy from the previous research. Then, the width and thickness of the local model were changed widely, and analyses were carried out to find the optimal hybrid local model size. Moreover, it was examined how to decide the optimal size of the hybrid local model with various crack length and aspect ratio of the specimen. The optimal size of the hybrid local model was examined from the comparison with the J integral of the whole model.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
X. Liu ◽  
Z. X. Lu ◽  
Y. Chen ◽  
Y. L. Sui ◽  
L. H. Dai

Application of thin-walled high strength steel has become a trend in the oil and gas transportation system over long distance. Failure assessment is an important issue in the construction and maintenance of the pipelines. This work provides an engineering estimation procedure to determine the J-integral for the thin-walled pipes with small constant-depth circumferential surface cracks subject to the tensile loading based upon the General Electric/Electric Power Research (GE/EPRI) method. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral are derived in tabulated forms through a series of three-dimensional (3D) finite element (FE) calculations for a wide range of crack geometries and material properties. Furthermore, the fit equations for elastic and plastic influence functions are developed, where the effects of crack geometries are explicitly revealed. The new influence functions lead to an efficient J estimation and can be well applied for structural integrity assessment of thin-walled pipes with small constant-depth circumferential surface cracks under tension.


Author(s):  
Rodolfo F. de Souza ◽  
Claudio Ruggieri

Structural integrity of submarine risers and flow lines transporting corrosive and aggressive hydrocarbons represents a key factor in operational safety of subsea pipelines. Advances in existing technologies favor the use of C-Mn steel pipelines (for example, API X65 grade steel) either clad or mechanically lined with a corrosion resistant alloy (CRA), such as Alloy 625, for the transport of corrosive hydrocarbons. However, while cost effective, specification of critical flaw sizes for their girth welds become more complex due to the dissimilar nature of these materials. In particular, effective fracture assessments of undermatched girth welds remain essential to determine more accurate acceptable flaw sizes for the piping system based upon engineering critical assessment (ECA) procedures. This work focuses on development of an evaluation procedure for the elastic-plastic crack driving force (as characterized by the J-integral) in pipeline girth welds with circumferential surface cracks subjected to bending load for a wide range of crack geometries and weld mismatch levels based upon the GE-EPRI framework. The study also addresses the effects of an undermatching girth weld on critical flaw sizes for a typical clad pipe employed in subsea flowlines having an Alloy 625 girth weld. The extensive 3-D numerical analyses provide a large set of solutions for J in cracked pipes and cylinders with mismatched girth welds while, at the same time, gaining additional understanding of the applicability of ECA procedures in welded cracked structural components.


Sign in / Sign up

Export Citation Format

Share Document