Sea Level Rise and Implication on Coastal Process: A Review

Author(s):  
Shatirah Akib ◽  
Afshin Jahangirzadeh ◽  
Babak Kamali ◽  
Noor Liana Mamat

The purpose of this review paper is to summarise the literature on sea level rise and its implication on coastal process. Sea level rise is the increase of volume of water in the oceans and seas relative to increase in height when compared to the ground level. Sea water covers increase when the sea level raises increase. Coastal process is the set of mechanisms that operate along a coastline, bringing about various combinations of erosion and deposition. Impacts in vulnerable regions of the Earth will be expected to have far reaching and dramatic by an accelerated global sea level rise. The other impacts of rising sea level are changes in salinity distribution in estuaries alteration in coastal circulation patterns, destruction of transportation infrastructure in low lying areas, and increase in pressure on coastal levee systems. The causes of a sea level rise are global warming and excessive extraction of groundwater in some areas.

Author(s):  
Shrinidhi Ambinakudige

The average global sea level has been predicted to rise anywhere between 0.53–2.5 m by 2100 with some local and regional variations in various climate change scenarios. Relative sea level change along most of the European coastline is similar to the global average. The objective of this paper is to estimate the extent of impact regarding three sea level rise (SLR) scenarios on European coastal regions. First, three inundation models estimate the area affected by the base sea level, 1 m SLR, and 2 m SLR. Then, based on the population and land cover classes in the coastal regions, land cover types and the estimated future population affected by the SLR scenarios are analyzed. This study used an inundation model (EU-DEM v1.1 digital elevation model). Land cover data from CLC2018 and monthly averaged sea level anomalies (SLA) files from 2013 to 2015 were used in the model. In the SLR0 scenario, about 8.7 million people are estimated to be affected at 2100. An estimated 11.6 million people will be affected in the SLR1 scenario; and an estimated 14.8 million people will be affected by the SLR2 scenarios. Arable lands and pastures are the two top land cover classes that will be affected by SLR. However, land under urban fabric and transportation are also two important land cover types affected by SLR which can induce major economic costs to coastal countries. A significant area of underwater bodies and wetlands will come in contact with sea water due to the extreme events caused by SLR.


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2021 ◽  
Author(s):  
Gustav Pallisgaard-Olesen ◽  
Vivi Kathrine Pedersen ◽  
Natalya Gomez

<div> <p>The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposits, have caused significant isostatic adjustments and local sea level changes, owing to erosional unloading and depositional loading of the lithosphere. Mass redistribution from erosion and deposition also has the potential to cause significant pertubations of the geoid, resulting in additional sea-level changes. The combined sea-level response from these processes, is yet to be investigated in detail for Scandinavia.</p> </div><div> <p>In this study we estimate the total sea level change from late-Pliocene- Quaternary glacial erosion and deposition in the Scandinavian region, using a gravitationally self-consistent global sea level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to the total late Pliocene-Quaternary mass redistribution, we <span>also </span>estimate transient sea level changes related specifically to the two latest glacial cycles.</p> </div><div> <p>We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and estimates of erosion on the inner shelf. Based on these estimates, we can define mass redistribution and construct a preglacial landscape setting.</p> </div><div> <p>Our preliminary results show <span>perturbations of</span> the local sea level up to ∼ 200 m since<span> the</span> late-Pliocene in the Norwegian Sea, suggesting that erosion and deposition ha<span>ve</span> influenced the local paleo sea level history in Scandinavia significantly.</p> </div>


2018 ◽  
Vol 9 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Angélique Melet ◽  
Benoît Meyssignac ◽  
Rafaël Almar ◽  
Gonéri Le Cozannet

2013 ◽  
Vol 9 (1) ◽  
pp. 353-366 ◽  
Author(s):  
A. Quiquet ◽  
C. Ritz ◽  
H. J. Punge ◽  
D. Salas y Mélia

Abstract. As pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand.


2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


2019 ◽  
Vol 55 (1) ◽  
pp. 260
Author(s):  
Constantinos Perisoratis

The climate changes are necessarily related to the increase of the Earth’s temperature, resulting in a sea level rise. Such continuous events, were taking place with minor and greater intensity, during the alternation of warm and cool periods in the Earth during the Late Quaternary and the Holocene periods. However, a particularly significant awareness has taken place in the scientific community, and consequently in the greater public, in the last decades: that a climatic change will take place soon, or it is on-going, and that therefore it is important to undertake drastic actions. However, such a climatic change has not been recorded yet, and hence the necessary actions are not required, for the time being.


Author(s):  
Emojong Amai Mercy ◽  
Eliud Garry Michura

This paper discusses the less publicised but far from less significant, an issue of how the international community’s approach to maritime boundary delimitation will be impacted by climate change resulting in sea level rise with coastal lands submerging affecting the international boundaries and impacting on biodiversity and human survival in the future. The climate change effect is already creating pressure on international law regardless of the direction that the law of the sea takes in remedying this dilemma. It is quite apparent that global disputes and conflicts are arising and solutions are needed urgently. The climate change and the consequent global sea level rise are widely touted to submerge islands and coastlines without discrimination. The international community has been relatively slow to react to what could pose an unprecedented threat to human civilisation.  The policies that have been applied have arguably been reactive and not proactive.  In future climate change may develop other by-products which may not be understood at this moment and may require a proactive approach. Further discussion of the merits of the potential paths is ideal in ensuring that appropriate and well thought-out resolutions are negotiated. Regardless of the outcome, the thorough debate is required to ensure the correct decision is made and that the balancing act between fulfilling states' interests and achieving a meaningful result does not become detrimental to the solidity and the enforceability of the outcome. There is a need to establish a comprehensive framework for ocean governance for management and long-term development and sustainability.


Sign in / Sign up

Export Citation Format

Share Document