The Numerical Investigation of Plastic Collapse Loads in Cylinders Containing Circumferential Flaws Under a Combined Loading of Internal Pressure, Tension and Bending Moment

Author(s):  
Liwu Wei

Fracture assessment diagram (FAD) based fracture assessment procedures are universally adopted by standards/documents including BS7910, R6, API579-1/ASME FFS-1 and FITNET. In the use of a FAD for structural integrity assessment, one important consideration is to determine the load ratio (Lr) which is defined by two equivalent definitions: Lr is either defined as the ratio of reference stress (σref) to yield strength (σY) as in BS7910, or as the ratio of applied load to plastic limit load as in R6. The solutions of reference stress or limit load are given in the assessment procedures for commonly encountered flawed structures such as a plate containing a surface crack and a cylinder containing an external surface crack. Although the solutions given in the various standards are not all the same, they were invariably derived on the basis of analysis of the force and moment equilibrium with regard to a flawed section and few of them has taken into account the effects of bi-axial stressing on a flawed section, thus remaining a question whether these solutions are still valid in situations involving bi-axial loading such as the presence of pressure in a cylinder in addition to axial tension and bending. In this work, finite element analysis (FEA) of plastic collapse was systematically performed on circumferential internal surface cracks in a cylinder subjected to various combined loads, including combined tension and pressure, combined bending moment and pressure, and combined tension, bending moment and pressure. The focus was on understanding the effects of bi-axial stressing due to pressure on plastic limit load. The investigation of these cases has demonstrated a significant effect in plastic limit load arising from the application of pressure introducing a state of bi-axial stressing. Comparison of the results of plastic limit load obtained from FEA with those derived from BS 7910 reference stress solutions was carried out to assess the applicability when the standard solutions of plastic collapse are used in the applications containing bi-axial stresses.

Author(s):  
Liwu Wei ◽  
Isabel Hadley

Fracture assessment diagram (FAD) based fracture assessment procedures are universally adopted by standards/documents including BS7910, R6, API579-1/ASME FFS-1 and FITNET. In the use of a FAD for structural integrity assessment, one important consideration is to determine the load ratio (Lr) which is defined by two equivalent definitions: Lr is either defined as the ratio of reference stress (σref) to yield strength (σY) as in BS7910, or as the ratio of applied load to plastic limit load as in R6. The solutions of reference stress or limit load are given in the assessment procedures for commonly encountered flawed structures such as a plate containing a surface crack and a cylinder containing an external surface crack. Although the solutions given in the various standards are not all the same, they were invariably derived on the basis of analysis of the force and moment equilibrium with regard to a flawed section and none of them has taken into account the effects of bi-axial stressing on a flawed section, thus leading to the likelihood of an overly conservative assessment. In this work, finite element analysis (FEA) of various flawed geometries (plate and cylinder containing surface cracks) was performed to compute plastic limit load, with the focus on understanding the effects of bi-axial stressing on plastic limit load. The geometries assessed include a plate with a surface crack subjected to both uni-axial and bi-axial loading, and a cylinder with circumferentially internal and external surface cracks sustaining a combination of axial loading and internal pressure. The investigation of these cases has demonstrated a significant increase in plastic limit load arising from bi-axial stressing. Comparison of the results of plastic limit load obtained from FEA with those derived from BS 7910 reference stress solutions was carried out to assess the extent of conservatism when the standard solutions are used in the applications containing bi-axial stresses. The implication for structural integrity assessment due to bi-axial stressing was also addressed. A comparison between BS 7910 Level 2B (material-specific FAD) and Level 3C (based on a FAD generated with FEA) procedures was also made and it was shown that whether the Level 3C procedure can reduce the conservatism in an assessment is dependent on individual cases.


Author(s):  
Ouk Sub Lee ◽  
Hyun Su Kim ◽  
Jong Sung Kim ◽  
Tae Eun Jin ◽  
Hong Deok Kim ◽  
...  

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Doo-Ho Cho ◽  
Young-Hwan Choi ◽  
Nam-Su Huh ◽  
Do-Jun Shim ◽  
Jae-Boong Choi

The plastic limit load solutions for cylinder and plate with slanted through-wall cracks (TWCs) are developed based on the systematic three-dimensional (3D) finite element (FE) limit analyses. As for loading conditions, axial tension, global bending, and internal pressure are considered for a cylinder with slanted circumferential TWC, whereas, axial tension and internal pressure are considered for a plate and a cylinder with slanted axial TWC. Then, the verification of FE model and analysis procedure employed in the present numerical work was confirmed by employing the existing solutions for both cylinder and plate with idealized TWC. Also, the geometric variables of slanted TWC which can affect plastic limit loads were considered. Based on the systematic FE limit analysis results, the slant correction factors which represent the effect of slanted TWC on plastic limit load were provided as tabulated solutions. By adopting these slant correction factors, the plastic limit loads of slanted TWC can be directly estimated from existing solutions for idealized TWC. Furthermore, the modified engineering estimations of plastic limit loads for slanted TWC are proposed based on equilibrium equation and von Mises yield criterion. The present results can be applied either to diverse structural integrity assessments or for accurate estimation of fracture mechanics parameters such as J-integral, plastic crack opening displacement (COD) and C*-integral for slanted TWC based on the reference stress concept (Kim, et al., 2002, “Plastic Limit Pressure for Cracked Pipes Using Finite Element Limit Analyse,” Int. J. Pressure Vessels Piping, 79, pp. 321–330; Kim, et al., 2001, “Enhanced Reference Stress-Based J and Crack Opening Displacement Estimation Method for Leak-Before-Break Analysis and Comparison With GE/EPRI Method,” Fatigue Fract. Eng. Mater. Struct., 24, pp. 243–254; Kim, et al., 2002, “Non-Linear Fracture Mechanics Analyses of Part Circumferential Surface Cracked Pipes,” Int. J. Fract., 116, pp. 347–375.)


Author(s):  
Nam-Su Huh ◽  
Do-Jun Shim ◽  
Yun-Jae Kim ◽  
Young-Jin Kim

This paper presents experimental validation of two reference stress based methods for circumferential cracked pipes. One is the R6 method where the reference stress is defined by the plastic limit load. The other is the enhanced reference stress method, recently proposed by the authors, where the reference stress is defined by the optimized reference load. Using thirty-eight published pipe test data, the predicted maximum instability loads according to both methods are compared with the experimental ones for pipes with circumferential through-thickness cracks and with part circumferential surface cracks. It is found that the R6 method gives conservative estimates of the maximum loads for all cases. Ratios of the experimental maximum load to the predicted load range from 0.54 to 0.98. On the other hand, the proposed method gives overall closer maximum loads than R6, compared to the experimental data. However, for part through-thickness surface cracks, the estimated loads were slightly non-conservative for four cases, and possible reasons were fully discussed.


Author(s):  
Şefika Elvin Eren ◽  
Tyler London ◽  
Yang Yang ◽  
Isabel Hadley

The British Standard, BS 7910 Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures is currently under revision [1]. Major changes have been undertaken, especially in the fracture assessment routes, and this paper specifically addresses the assessment of proximity to plastic collapse, usually expressed as the parameter Lr via either a reference stress or limit load approach. In the new edition of BS 7910, the reference stress approach has been retained for the assessment of many geometries, mainly for reasons of continuity. However, new limit load solutions (originating in the R6 procedure) are given for use in the assessments of strength mismatched structures or clad plates. In general, a reference stress solution and a limit load solution for the same geometry should deliver the same value of Lr. However, recent comparative studies have shown differences in the assessment of plastic collapse depending on whether the reference stress solutions in BS 7910:2013 or the limit load solutions in R6 are used for the calculation of Lr. In this paper, the extent of the difference in the assessment results with respect to the choice of solutions and boundary conditions are discussed. The results of the assessments in accordance with BS 7910 and R6 are compared with the results of numerical assessments obtained via Finite Element Analysis (FEA). The collapse loads observed in various wide plate tests conducted in the last 20 years are also compared with the collapse loads predicted by BS 910:2013, R6 and FEA. Finally, observations regarding the accuracy of different Codes and FEA are discussed.


Author(s):  
Afshin K. Motarjemi

Fracture assessment procedures such as BS 7910 and API 579 are formulated based on the Fracture Mechanics concept for assessing integrity of structures such as pipelines, pressure vessels, etc. In the current study those procedures are applied to through-wall and surface cracked pipe geometry under four-point bending. The predicted maximum tolerable applied loads are then compared with pipe full-scale fracture testing results published by Miura et al (2002). Other assessment schemes namely, GE/EPRI, Net-section plastic collapse, LBB.NRC and finally LBB.ENG2, as reported in the same publication are also included in the current paper for sake of comparison. The comparative study showed that BS 7910 and API 579 predict similar maximum tolerable load for through-wall pipes but different value for surface-cracked pipes. Difference in predictions for the latter geometry is owing to the use of different stress intensity factor/reference stress solution by BS 7910 than API 579. However, both procedures provided conservative results compared with the experimental data as well as other engineering routes mentioned in Miura et al (2002).


Author(s):  
Tae-Song Han ◽  
Nam-Su Huh ◽  
Do-Jun Shim

In order to assess a structural integrity of cracked components made of highly ductile material based on fully plastic fracture mechanics concept, an accurate plastic limit load of components of interest is crucial element. Such a plastic limit load can also be applied to estimate elastic-plastic J-integral based on the reference stress concept. In this context, during last several decades, many efforts have been made to suggest plastic limit load solutions of cracked cylinder. Recent works for evaluating rupture probabilities of nuclear piping indicate that the only use of idealized circumferential through-wall crack leads to very conservative results which in turn gives higher rupture probabilities of nuclear piping, thus the considerations of more realistic crack shape during crack growth due to primary water stress corrosion cracking (PWSCC) and fatigue and axial through-wall crack were recommended to come up with more realistic rupture probabilities of nuclear piping. Then, the needs of fracture mechanics parameters of non-idealized through-wall cracks both in axial and circumferential directions have been raised. In the present work, the plastic limit loads of thick-walled cylinder with non-idealized axial and circumferential through-wall cracks are proposed based on detailed 3-dimensional finite element analyses. The present results can be applied either to assess structural integrity of thick-walled nuclear piping with non-idealized through-wall cracks or to calculate elastic-plastic J-integral using the reference stress concept.


2013 ◽  
Vol 774-776 ◽  
pp. 1090-1097 ◽  
Author(s):  
Zhi Xiang Duan ◽  
Kun Shi

This paper discusses the plastic limit load of elbows without defects and with local thinned area (LTA) in the extrados under combined pressure and in-plane closing bending moment. Finite element analysis (FEA) and experiments have been used. The results of FEA show that, for the elbows without defects, when the ratio of pressure to the limit pressure (P/PL) is smaller than 0.469, the limit moment of elbows increases with the increasing pressure; when the ratio (P/PL) is bigger than 0.469, the limit moment of elbow decreases with the increasing pressure. For the elbows with LTA, the FEA results show that with different LTA the variation of the limit load of elbows to the pressure is different. Perhaps, the limit moment of elbows always decreases with the increasing pressure. It is also likely that the limit moment of elbows increases with the increasing pressure and then decreases with the increasing pressure. The results of FEA are consistent with the experimental results. By fitting the results of FEA, the safety assessment figure for elbows under combined pressure and in-plane closing bending moment is drawn.


Author(s):  
W. Reinhardt ◽  
X. Wang

The fracture mechanics evaluation of tubes and pipes with circumferential degradation typically requires that the plastic limit load capacity be evaluated under a combination of axial force and bending moment loading. Most available analytical solutions are thin-wall approximations and may not work well for heavy-wall applications. The present paper derives an analytical limit load for a cylindrical pipe or tube with a partial circumferential, partial through-wall flaw and its bounding cases (through wall partial circumferential and uniform circumferential part-throughwall flaw). The solution is not in closed form, but can be easily solved with available mathematical software like MathCAD. The obtained limit loads for a steam generator tube are compared to those from simplified analytical solutions. The effect of tube supports on the limit load of a tube with non-axisymmetric flaw is discussed with a simplified model.


Author(s):  
S¸efika Elvin Eren ◽  
Isabel Hadley ◽  
Kamran Nikbin

At present within the fracture assessment routes of different codes and standards, two different options for the assessment of plastic collapse, Lr, are available, namely reference stress and limit load approaches. Recent comparative studies have shown significant differences in the assessment of plastic collapse depending on whether the reference stress solutions in BS 7910:2005 or the limit load solutions in R6/FITNET are used for the calculation of Lr. In this paper, differences with respect to the choice of solutions and boundary conditions will be illustrated and observations regarding the route that the Codes should take with respect to a unified assessment will be discussed.


Sign in / Sign up

Export Citation Format

Share Document