Variation of Mechanical Properties of Soft Marine Clay With Methane Gas Content

Author(s):  
Raúl Nava Castro ◽  
Jean M. E. Audibert ◽  
Willard DeGroff ◽  
Kuat C. Gan ◽  
Paul Ruckman

To quantify the effects of methane gas on mechanical properties of soft marine clay, an exhaustive laboratory testing program was developed using zeolite to uniformly disseminate gas bubbles inside the clay matrix. Results from controlled rate-of-strain (CRS) tests indicated that as the gas content increases, there is a reduction in the interpreted preconsolidation pressure, although the rigidity of the clay with more gas increased throughout the test. Minivane test results indicated that the undisturbed shear strength decreases as the amount of methane gas increases, while the residual and remolded strengths remain practically unchanged, i.e., are independent of the gas content. Similarly results from triaxial tests indicated that the undisturbed shear strength is reduced as the gas content increases, but there was no change in the failure mode. Interestingly, the normalized shear strength increased for the clay with gas, when the samples were tested at 100 percent of deformation per hour. It is theorized that the methane gas bubbles interact with both the clay platelets and the pore water, and, to certain point, bear part of the load, thus modifying the distribution of the load in the soil structure; that is to say, there is a partial load transfer from the gas bubbles to the soil structure, as the clay particles confine the methane gas.

2019 ◽  
Vol 92 ◽  
pp. 14011
Author(s):  
Mohsen Asadi ◽  
Ahmad Mahboubi

Soil engineering properties can be improved employing different methods. Among them is mixing soil with tire derived additives (TDA). TDAs generally increase some parameters of mixture such as damping ratio, permeability, ductility and also in some cases shear strength. Various properties of TDAs from mechanical properties to their geometry can affect the mixture behavior. In this paper using the YADE platform, simulations of triaxial tests on sand tire mixtures are presented. To take compressibility into consideration, each rubber crumb particle is made of several spheres connected elastically to each other. For sand particle generation the clump technique was employed. Shapes of both sand and rubber particles are inspired from real grains. As properties of sand and rubber are different, especially Young modulus, rubber sand interaction is considered as soft rigid contact. Therefor harmonic average and arithmetic average was used to compute contact Young modulus (and then stiffness). The model was validated by comparison of results of triaxial tests simulation on pure rubber sample with literature ones which both exhibited linear stress-strain curve. Then triaxial tests with different sand to rubber ratio were simulated to see whether harmonic average or arithmetic average gives the best match to literature. The results show shear strength reduces by decreasing of sand to rubber ratio. This is the same as what is reported in literature.


2006 ◽  
Vol 43 (6) ◽  
pp. 601-617 ◽  
Author(s):  
Y -H Wang ◽  
W -K Siu

This paper reports the effects of structure on the mechanical responses of kaolinite with known and controlled fabric associations. The dynamic properties and strength were assessed by resonant column tests and undrained triaxial compression tests, respectively. The experimental results demonstrate that interparticle forces and associated fabric arrangements influence the volumetric change under isotropic compression. Soils with different structures have individual consolidation lines, and the merging trend is not readily seen under an isotropic confinement up to 250 kPa. The dynamic properties of kaolinite were found to be intimately related to the soil structure. Stronger interparticle forces or higher degrees of flocculated structure lead to a greater small-strain shear modulus, Gmax, and a lower associated damping ratio, Dmin. The soil structure has no apparent influence on the critical-state friction angle (ϕ′c = 27.5°), which suggests that the critical stress ratio does not depend on interparticle forces. The undrained shear strength of kaolinite is controlled by its initial packing density rather than by any interparticle attractive forces, and yet the influence of the structure on the effective stress path is obvious.Key words: interparticle forces, shear modulus, damping ratio, stress–strain behavior, undrained shear strength, critical state.


Author(s):  
Karolína Faktorová ◽  
Juraj Chalmovský ◽  
Pavel Koudela ◽  
Lumír Míča

One of the most important type of Brno’s subsoil is Miocene’s clay. Mechanical properties of these clays were already studied by various methods, authors, in several locations. These parameters, however, varies across the locations and therefore new data are needed to further refineme them. The objective of the laboratory tests presented in this paper was to determine shear strength and compressibility parameters on reconstituted samples, locality Černá Pole. Stiffness parameters for primary loading and unloading – reloading were obtained from series of oedometer tests. Consolidated undrained triaxial tests were performed for evaluation of soil critical shear strength. Obtained results were compared with another available data.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mafalda Lopes Laranjo ◽  
Manuel Matos Fernandes

Abstract Undrained shear strength plays a fundamental role on the behaviour of clays. In overconsolidated clays, this parameter is largely influenced by test conditions, namely consolidation stress. “Prazeres Clay” is a Miocene overconsolidated formation, that can be found in a significant part of Lisbon area. Over the last decades a number of very relevant constructions have generated a large database for physical and mechanical properties of Miocene clays. Included in a broader study at the Faculty of Engineering of Porto University about Miocene clay’s physical and mechanical properties, existing data was gathered, treated and critically analysed, in order to establish a useful framework for geotechnical designers. This paper presents the results obtained for undrained shear strength, obtained from triaxial tests and Ménard Pressuremeter tests. It addresses the main difficulties associated with test’s interpretation and presents a discussion on how theoretical values relate to experimental ones. The paper proposes a range of variation for Prazeres Clay’ undrained shear strength based on a significant amount of test results, that is considered to be useful for geotechnical design. Article Highlights Undrained Shear strength is a relevant parameter for clays, and is usually derived from triaxial tests For overconsolidated clays, this parameter is highly dependent on preconsolidation stress, and on its relation to in situ stress. Based on a significant set of data, the paper presents a simple methodology for estimating this parameter


2018 ◽  
Vol 11 (5) ◽  
pp. 960-965
Author(s):  
O. P. AGUIAR ◽  
R. B. CALDAS ◽  
F. C. RODRIGUES ◽  
R. H. FAKURY ◽  
G. S. VERÍSSIMO

Abstract This paper presents an experimental study with numerical modeling of Crestbond shear connectors in concrete filled tube columns. The Crestbond, which consists in a steel plate with regular cuttings, was originally conceived for composite beams and is now being proposed as an alternative device for load introduction and shear transfer at the steel-concrete interface in concrete filled tube columns. The results achieved in this work were very favorable to the new application proposed for the connector as high values of shear strength were obtained. Moreover, the numerical and experimental results enabled comparative analysis and investigations regarding the influence of concrete conditions and the geometry of the column section on the mechanical properties of the connector.


Alloy Digest ◽  
1962 ◽  
Vol 11 (3) ◽  

Abstract ALUMINUM 220 is a 10% magnesium-aluminum casting alloy having the highest combination of mechanical properties, corrosion resistance and machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-112. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract ALUMINUM 2011 is an age-hardenable aluminum-copper alloy to which lead and bismuth are added to make it a free-machining alloy. It has good mechanical properties and was designed primarily for the manufacture of screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-32. Producer or source: Various aluminum companies. Originally published October 1955, revised December 1978.


Alloy Digest ◽  
1957 ◽  
Vol 6 (7) ◽  

Abstract ALCAN 350 is a 10% magnesium-aluminum casting alloy having high mechanical properties, excellent machinability, and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-52. Producer or source: Aluminum Company of Canada Ltd.


Alloy Digest ◽  
1971 ◽  
Vol 20 (11) ◽  

Abstract COPPER ALLOY No. 675 is a copper-zinc alloy having excellent mechanical properties and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-244. Producer or source: Brass mills.


Sign in / Sign up

Export Citation Format

Share Document