Numerical Analysis of Failed Forecasts of Waves Under Low Pressures From Viewpoint of Ship Operation

Author(s):  
Kenji Sasa ◽  
Chen Chen ◽  
Shigeaki Shiotani ◽  
Teruo Ohsawa ◽  
Daisuke Terada

Today, weather routing becomes more important under the current situation of international maritime transportation. However, the authors reveal that the current systems are not necessarily sufficiently reliable. It is also worthwhile to consider the background of the difficulty in numerically forecasting winds and waves. Here, two failed cases of wave forecasts are verified using WRF and SWAN, two numerical meso-meteorology models. In both failed cases, low pressures developed from the southern sea area of Japan with a northeast direction. First, wind direction can be reproduced correctly, even if the resolution of the simulation is changed. Second, if the resolution is insufficient, wind speed will be underestimated as smaller than the observed values. At the same time, wave height tends to be underestimated as compared to observed values, too. This is the feasibility study for improving the forecasting of wave growth pattern due to developing low pressures from the viewpoint of safe ship operation.

2019 ◽  
Vol 7 (11) ◽  
pp. 420
Author(s):  
Lončar ◽  
Leder ◽  
Leder ◽  
Carević

The conditions for the occurrence of high waves in front of the Rijeka port in the Rijeka Bay were analyzed. The analysis was carried out on the basis of measured data on the wave rider station located in front of the main breakwater of the port of Rijeka and the results of numerical wave generation modelings for the wider sea area on the spatial scale of the Adriatic basin. The results of the conducted analysis show that the sudden transition in wind direction from the third to the second quadrant (and vice versa), with the simultaneous rapid increase in wind speed, creates the conditions for generating the largest waves in front of the port of Rijeka. The main reason for achieving the highest wave height in these conditions is the unbalanced wind power input with non-developed surface dissipation (white-capping) and quadruplet wave interaction. Situations with a slower increase in wind speed and approximately constant wind direction resulted in the occurrence of smaller wave heights. The direct application of anemometric data for the forcing wind field in the Adriatic basin within the wave generation model results in a more accurate simulation of wave height and wave period development than application of the wind field from the prediction atmospheric model Aladin-Hr. This is due to the fact that the site is located in a semi-enclosed sea area of restricted fetch, and the spatial/temporal resolution of atmospheric data (2 km and 3 h) is not sufficient to resolve the rapid transition in the wind field. In the case of direct application of anemometric data, the white-capping parameterization should be of a non-stationary character.


2015 ◽  
Vol 18 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Morteza Zanganeh ◽  
Abbas Yeganeh-Bakhtiary ◽  
Takao Yamashita

In this study, the adaptive network-based fuzzy inference system (ANFIS) and artificial neural network (ANN) were employed to estimate the wind- and wave-induced coastal current velocities. The collected data at the Joeutsu-Ogata coast of the Japan Sea were used to develop the models. In the models, significant wave height, wave period, wind direction, water depth, incident wave angle, and wind speed were considered as the input variables; and longshore and cross-shore current velocities as the output variables. The comparison of the models showed that the ANN model outperforms the ANFIS model. In addition, evaluation of the models versus the multiple linear regression and multiple nonlinear regression with power functions models indicated their acceptable accuracy. A sensitivity test proved the stronger effects of wind speed and wind direction on longshore current velocities. In addition, this test showed great effects of significant wave height on cross-shore currents' velocities. It was concluded that the angle of incident wave, water depth, and significant wave period had weaker influences on the velocity of coastal currents.


Author(s):  
Ike Fibriani ◽  
Januar Fery Irawan ◽  
Alfredo Bayu Satriya ◽  
Satrio Budi Utomo ◽  
Widyono Hadi ◽  
...  

Indonesia is an archipelagic country that has a very wide sea area. Thus, Indonesian sea has a huge potential of natural resources that can be utilized to grow the nation's economy. There are many occupations and efforts that can be done to increase the income from the sea and also to conserve it. Fishery is one of the most effective way to gain the sea resources; however, fishery is limited by the weather condition on the sea. This is also a problem that happened in Puger Beach. Puger Beach is located in the south Jember and it faces the Hindia Ocean, which means the weather condition is more dangerous for fishermen than other part of coastal. To ensure the safety of the fishermen, the weather condition on the sea must be evaluated and predicted before the fishery. This study designed a system to provide fishermen in Puger Beach an information about sea and beach weather condition which consist of wave height prediction, wind speed, temperature, humidity and weather prediction. The wind speed is obtained from self-designed anemometer system, the temperature is measured using LM35 sensor, and the humidity is assessed using DHT22. The wave height in the sea was predicted by calculating the wind speed value and effective average fetch value using neural network algorithm. The weather on the sea and on the beach were predicted by rain and light sensor. This weather prediction would be classified into three different results, namely raining, cloudy and bright. After some experiments, the result showed that the device can provide the information needed for fishermen and it has a high sensing accuracy. The humidity measurement had an average error of 1.1%, the temperature measurement had 1.42% average error, and 2.37% for the wind speed measurement. The wave height measurement system worked out and found the average wave height in Puger Beach 0.37 meters.


Author(s):  
Dexin Zhan ◽  
Don Spencer ◽  
David Molyneux

This paper presents numerical analysis of the behavior of a towed FPSO using an in-house computer code Ship Maneuvering Laboratory (SML). The background of the study was an attempt to explain some unexpected observations during a towing situation, where the position of the towed vessel was on the upwind side of the towing vessel and oscillating in yaw. The effects of rudder, wind and current were investigated initially. Then the study focused on the behavior of the towed FPSO with different hydrodynamic coefficients in an environment of steady wind varying from 1.0 to 25 knots with the wind direction on the starboard bow of the tug. The tug was assumed to move in a straight line at a constant speed. It was found that with the calculated MMG coefficients the FPSO had large oscillations of track and yaw when the wind speed was low (1 knot). When the wind speed was increased, the FPSO moved to the starboard side of the tug (up wind) and kept oscillating and yawing but with less amplitude. This was similar to the FPSO behavior observed in the incident. This phenomenon of oscillating and yawing of the FPSO was not seen when using the measured PMM hydrodynamic coefficients. One possible explanation for the FPSO behavior in the incident was related to the specific values of the FPSO’s hydrodynamic coefficients. Some possible methods to reduce the FPSO yaw oscillation are also provided. Numerical results showed that by adding drag created by a drogue to the FPSO or using a longer towing bridle can significantly increase the directional stability of the FPSO. A sensitivity study of the FPSO hydrodynamic coefficients is also given and some conclusions are provided.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3101
Author(s):  
Yu Wan ◽  
Zhenxiang Yi

In this paper, a novel 2.5-dimensional (2.5D) flexible wind sensor is proposed based on four differential plate capacitors. This design consists of a windward pillar, two electrode layers, and a support layer, which are all made of polydimethylsiloxane (PDMS) with different Young’s moduli. A 2 mm × 2 mm copper electrode array is located on each electrode layer, forming four parallel plate capacitors as the sensitive elements. The wind in the xy-plane tilts the windward pillar, decreasing two capacitances on the windward side and increasing two capacitances on the leeward side. The wind in the z-axis depresses the windward pillar, resulting in an increase of all four capacitances. Experiments demonstrate that this sensor can measure the wind speed up to 23.9 m/s and the wind direction over the full 360° range of the xy-plane. The sensitivities of wind speed are close to 4 fF·m−1·s and 3 fF·m−1·s in the xy-plane and z-axis, respectively.


1958 ◽  
Vol 39 (3) ◽  
pp. 129-136 ◽  
Author(s):  
C. W. Newton ◽  
Sey Katz

By means of hourly rainfall data from the Hydroclimatic Network, the motions of large rainstorms, of the kind associated with squall lines, are examined in relation to the winds aloft. Very little correlation is found between the speed of movement of the rainstorms and the wind speed at any level, although the fastest moving storms were associated with strong winds aloft. Significant correlation is found between direction of motion of rainstorms, and wind direction at 700 mb or higher levels. On the average, the rainstorms move with an appreciable component toward right of the wind direction. The difference between these results, and those from other studies based on small precipitation areas, is ascribed to propagation. The mechanism involved is discussed briefly.


2014 ◽  
Vol 14 (19) ◽  
pp. 10721-10730 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


Sign in / Sign up

Export Citation Format

Share Document