Hydrodynamic Performance of a Novel Free Surface Pitching Breakwater

Author(s):  
Vengatesan Venugopal ◽  
Stefan Zlatev

A new concept floating breakwater was developed and tested to evaluate its hydrodynamic performance in this paper. This innovative floating breakwater has a rocking body shape which could also be used as a wave power device. A scale model was tested in a wave flume under regular and irregular wave conditions for various combinations of wave frequencies and wave heights. The breakwater has been tested for three immersion depths of 0.05 m, 0.09 m and 0.13 m from still water level. The measured transmitted and reflected waves were used to evaluate the coefficients of transmission (CT), reflection (CR) and dissipation (CL). The results illustrated that the breakwater model performed at its best when submerged at 0.13m, as this immersion depth produced lower coefficients of transmission (CT), lower reflection coefficients (CR) and higher energy dissipation (CL) coefficients. The comparison between regular and irregular waves produced similar ranges of transmission, reflection and energy coefficients.

Author(s):  
Bing Ren ◽  
Xuelin Li ◽  
Peng Han ◽  
Yongxue Wang

A numerical irregular wave flume is developed using VOF method in conjunction with Reynolds equations. An active absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume to absorb the re-reflected waves. A sponge layer is set on the open boundary to absorb the outgoing waves. The numerical results of regular and irregular waves using the active absorbing-generating boundary are compared to the numerical results using the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The linear damping coefficient is used in the sponge layer. The damping characteristics of the sponger layer implemented in the wave flume are discussed. The computed wave spectra are compared with the target spectra.


Author(s):  
Renato Skejic ◽  
Odd M. Faltinsen

Ship maneuvering in waves is analyzed by using a unified seakeeping and maneuvering two-time scale model in irregular sea that has been applied by Skejic and Faltinsen [1] for regular waves. The irregular wave effects are accounted for by Newman’s [2] approximation of the slow-drift 2nd order wave loads valid for deep water (Faltinsen [3], Pinkster [29]). The modular type maneuvering model (MMG model) based on Söding’s [4] nonlinear slender-body theory is used for the maneuvering analysis. Forces and moments due to rudder, propeller, and viscous cross-flow are accounted for as presented by Skejic and Faltinsen [1] and Yasukawa [5, 6]. In particular, the behavior of the propulsive coefficients (the thrust deduction and wake fraction) in waves (Faltinsen et al. [7], Faltinsen and Minsaas [8]) are discussed from the perspective of ship maneuvering characteristics in both regular and irregular wave environments. The unified model of seakeeping and maneuvering for deep-water irregular waves is validated for the ‘S7-175’ (‘SR 108’) container ship in calm water and regular deep-water wave scenarios by comparison with experimental results by Yasukawa [5, 6]. The maneuvering model is applied to a ‘MARINER’ ship performing turning maneuver in irregular waves. The obtained results of the ships main maneuvering parameters are discussed from a statistical point of view.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Baoji Zhang ◽  
Ying Wang

In order to predict the hydrodynamic performance of semi-submersible offshore platform accurately, based on CFD theory, continuous equation and N-S equation as the control equation, RNG type k-ε model as turbulence model, using the finite difference method to discretize the control equation,using the Semi-Implicit Method for Pressure Linked Equation (SIMPLE) algorithm to solve the control equation,using the VOF method to capture the free surface. The numerical wave tank of irregular wave is established, and the wave force and motion response of the semi-submersible platform under irregular wave are studied. Based on the Jonswap spectrum density function, for a certain area of two irregular waves (South China sea, a-ten-year return period, a-hundred-year return period) sea condition, five wave direction Angle (0 °, 30 °, 45 °, 60 °, 90 °), a total of 10 kinds of conditions of the motion response of semi-submersible platform are simulated, through analysis and comparison of simulation results, the influence law of wave angle, wave period and wave height on platform motion is obtained. Compared with the experimental values, the results of heave and pitch are close to the experimental data under the sea condition of 2, 0 degree wave angles. The research results in this paper can provide reference for the design and motion response prediction of practical semi-submersible offshore platforms.


Author(s):  
Fa´bio Nascimento ◽  
Carlos Levi ◽  
Antonio C. Fernandes ◽  
Paulo de Tarso Esperanc¸a ◽  
Paulo Sergio Gomes

Important aspects in the studies to assess the dynamic behavior of ocean vessels or structures, like ships or offshore oil platforms is the capability of generating gravity waves under strict laboratory control. Model test techniques are continuously improving and are very much dependent on the good quality waves that could be generated in a basin. Since ocean basins have finite dimensions, the waves reflected by the models, walls and even to some extent by the beaches, may become a critical issue if you need to guarantee accuracy and reliability for the tests. Besides the undesirable pattern of reflected waves within the test area of the basin, these waves come back onto the wave maker, affecting the correct properties of the wave to be generated. Modern wave generator apparatuses are now being equipped with real time control systems that enable them to generate an irregular wave pattern. At the same time they correct their flap motions to compensate re-reflection of waves from the wave-boards. The quality of such a system depends very much on the efficiency of the algorithm to be implemented in it. This paper discusses the development of an effective mathematical model of a control system used in an irregular wave maker–hinged flap type, featuring active wave reflection compensation. An efficient real time algorithm has been selected to run the control system device. The system is able to generate first order irregular waves and detect reflected waves that approach the wave maker by means of wave probes mounted on the face of the flap. The probe registers the input data to be used by the actuator to compensate the incoming wave by controlling the flap motion. Computer simulations obtained for a wave-maker in a flume are used to demonstrate the efficiency of each step of the theory and the overall accuracy of the compensation system.


2019 ◽  
Vol 396 ◽  
pp. 60-69
Author(s):  
João Alfredo Santos ◽  
Liliana V. Pinheiro ◽  
Hossam S. Abdelwahab ◽  
Conceição Juana E.M. Fortes ◽  
Francisco G.L. Pedro ◽  
...  

This paper describes the physical model, experimental setup and tests performed at the Portuguese Civil Engineering Laboratory (LNEC), to study the motions and forces of a moored ship at the Leixões port, for different sea states in irregular waves. The tests were carried out at one of the wave tanks of LNEC, where the Leixões port layout was implemented at scale 1:80 with the detailed model similar to the prototype bathymetry and surrounding structures. The moored ship is a 3.43 m long scale model of the well-known “Esso Osaka” tanker and is moored to the pier A of the oil terminal at 0.135 m draft. Several types of measurements were recorded in this study. The free-surface elevation and wave direction were measured with a set of resistive wave gauges. The wave velocities at the entrance of the harbour were measured with an acoustic Doppler velocimeter. Motions of the moored ship were measured with the OptiTrackTM motion capture system whereas forces on fenders and mooring lines were measured with load cells attached to a complex spring system developed at LNEC. Several tests were carried out for a number of incident sea states characterized by a JONSWAP spectrum, with different significant wave heights and peak periods. The measurement, analysis and results obtained for the incident wave conditions characterized by a significant wave height of 6 m and a peak wave period of 14 s are presented and discussed in this paper.


Author(s):  
Stefan G. Siegel ◽  
Casey Fagley ◽  
Marcus Römer ◽  
Thomas McLaughlin

The ability of a Cycloidal Wave Energy Converter (CycWEC) to cancel irregular deep ocean waves is investigated in a 1:300 scale wave tunnel experiment. A CycWEC consists of one or more hydrofoils attached equidistant to a shaft that is aligned parallel to the incoming waves. The entire device is fully submerged in operation. Wave cancellation requires synchronization of the rotation of the CycWEC with the incoming waves, as well as adjustment of the pitch angle of the blades in proportion to the wave height. The performance of a state estimator and controller that achieve this objective were investigated, using the signal from a resistive wave gage located up-wave of the CycWEC as input. The CycWEC model used for the present investigations features two blades that are adjustable in pitch in real time. The performance of the CycWEC for both a superposition of two harmonic waves, as well as irregular waves following a Bretschneider spectrum is shown. Wave cancellation efficiencies as determined by wave measurements of about 80% for the majority of the cases are achieved, with wave periods varying from 0.4s to 0.75s and significant wave heights of Hs ≈ 20mm. This demonstrates that the CycWEC can efficiently interact with irregular waves, which is in good agreement with earlier results obtained from numerical simulations.


1974 ◽  
Vol 1 (14) ◽  
pp. 98
Author(s):  
C. Campos Morais

The paper deals with two-dimensional tests on a scale model of a dolos breakwater. It is related with the construction of a large harbour at Sines for tankers with up to 1 million dwt, ore ships with up to 300,000 dwt, general cargo, etc. The main breakwater is design ed with 40 t dolos, in order to withstand waves with up to 1 1 m significant wave height(100 years return period). Considerations on wave data and on modelling the spectrum ( Pierson-Moskowitz ) precede the presentation of three sets of tests on LNEC's irregular wave flume. Main results are compared with those from regular wave tests. The most important conclusions are stressed: influence of pla_ cement on dolos damages, irrelevance of maintenance, importance of the singular zone of the dolos support base, disadjustment of Hudson's formula for calculation of dolos weight using H as significant wave height,and importance of individual movements for the risk of breaking of individual blocks.


1982 ◽  
Vol 1 (18) ◽  
pp. 4 ◽  
Author(s):  
Hajime Mase ◽  
Yuichi Iwagaki

The main purpose of this paper is to propose a model for prediction of the spatial distributions of representative wave heights and the frequency distributions of wave heights of irregular waves in shallow-water including the surf zone. In order to examine the validity of the model, some experiments of irregular wave transformation have been made. In addition, an attempt has been made to clarify the spatial distribution of wave grouping experimentally. Especially the present paper focuses finding the effects of the bottom slope and the deep-water wave steepness on the wave height distribution and wave grouping.


Author(s):  
Elizabeth Freeman ◽  
Kristen Splinter ◽  
Ron Cox

Floating Breakwaters are used extensively to provide cost effective protection from wind and vessel waves. Floating breakwaters are commonly multitasked, being used as a point of mooring for vessels or simply an access way to other pontoons in a small boat harbour, as well as their main function as wave dissipators. A floating breakwater does not completely stop the incident wave; rather it partially transmits, partially reflects and partially dissipates the wave energy. Cox et al (2007) completed wave flume testing of a number of floating breakwaters and reported on performance in irregular waves with particular emphasis on wave transmission and reflection, energy dissipation and restraining forces. Motion measurements were limited by the instrumentation. This paper discusses the results from a further series of laboratory experiments on the dynamic motions of an active floating breakwater system. The performance is related to wave attenuation, wave reflection and energy dissipation as well as safety considerations for standing persons based on high resolution measurements of accelerations in all six degrees of freedom.


2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Sebastien Gueydon ◽  
Frances Judge ◽  
Eoin Lyden ◽  
Michael O’Shea ◽  
Florent Thiebaut ◽  
...  

This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.


Sign in / Sign up

Export Citation Format

Share Document