scholarly journals A Heuristic Approach for Inter-Facility Comparison of Results from Round Robin Testing of a Floating Wind Turbine in Irregular Waves

2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Sebastien Gueydon ◽  
Frances Judge ◽  
Eoin Lyden ◽  
Michael O’Shea ◽  
Florent Thiebaut ◽  
...  

This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.

2021 ◽  
Vol 9 (9) ◽  
pp. 988 ◽  
Author(s):  
Sebastien Gueydon ◽  
Frances M. Judge ◽  
Michael O’Shea ◽  
Eoin Lyden ◽  
Marc Le Boulluec ◽  
...  

This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins.


Author(s):  
Matthew Hall ◽  
Javier Moreno ◽  
Krish Thiagarajan

This paper presents performance requirements for a real-time hybrid testing system to be suitable for scale-model floating wind turbine experiments. In the wave basin, real-time hybrid testing could be used to replace the model wind turbine with an actuation mechanism, driven by a wind turbine simulation running in parallel with, and reacting to, the experiment. The actuation mechanism, attached to the floating platform, would provide the full range of forces normally provided by the model wind turbine. This arrangement could resolve scaling incompatibilities that currently challenge scale-model floating wind turbine experiments. In this paper, published experimental results and a collection of full-scale simulations are used to determine what performance specifications such a system would need to meet. First, an analysis of full-scale numerical simulations and published 1:50-scale experimental results is presented. This analysis indicates the required operating envelope of the actuation system in terms of displacements, velocities, accelerations, and forces. Next, a sensitivity study using a customization of the floating wind turbine simulator FAST is described. Errors in the coupling between the wind turbine and the floating platform are used to represent the various inaccuracies and delays that could be introduced by a real-time hybrid testing system. Results of this sensitivity study indicate the requirements — in terms of motion-tracking accuracy, force actuation accuracy, and system latency — for maintaining an acceptable level of accuracy in 1:50-scale floating wind turbine experiments using real-time hybrid testing.


2021 ◽  
Author(s):  
Carlos Eduardo Silva de Souza ◽  
Nuno Fonseca ◽  
Petter Andreas Berthelsen ◽  
Maxime Thys

Abstract Design optimization of mooring systems is an important step towards the reduction of costs for the floating wind turbine (FWT) industry. Accurate prediction of slowly-varying horizontal motions is needed, but there are still questions regarding the most adequate models for low-frequency wave excitation, and damping, for typical FWT concepts. To fill this gap, it is fundamental to compare existing load models against model tests results. This paper describes a calibration procedure for a three-columns semi-submersible FWT, based on adjustment of a time-domain numerical model to experimental results in decay tests, and tests in waves. First, the numerical model and underlying assumptions are introduced. The model is then validated against experimental data, such that the adequate load models are chosen and adjusted. In this step, Newman’s approximation is adopted for the second-order wave loads, using wave drift coefficients obtained from the experiments. Calm-water viscous damping is represented as a linear and quadratic model, and adjusted based on decay tests. Additional damping from waves is then adjusted for each sea state, consisting of a combination of a wave drift damping component, and one component with viscous nature. Finally, a parameterization procedure is proposed for generalizing the results to sea states not considered in the tests.


Author(s):  
Felipe Vittori ◽  
Faisal Bouchotrouch ◽  
Frank Lemmer ◽  
José Azcona

The design of floating wind turbines requires both, simulation tools and scaled testing methods, accurately integrating the different phenomena involved in the system dynamics, such as the aerodynamic and hydrodynamic forces, the mooring lines dynamics and the control strategies. In particular, one of the technical challenges when testing a scaled floating wind turbine in a wave tank is the proper integration of the rotor aerodynamic thrust. The scaling of the model based on the Froude number produces equivalent hydrodynamic forces, but out of scale aerodynamic forces at the rotor, because the Reynolds number, that governs the aerodynamic forces, is not kept constant. Several approaches have been taken to solve this conflict, like using a tuned drag disk or redesigning the scaled rotor to provide the correct scaled thrust at low Reynolds numbers. This work proposes a hybrid method for the integration of the aerodynamic thrust during the scaled tests. The work also explores the agreement between the experimental measurements and the simulation results through the calibration and improvement of the numerical models. CENER has developed a hybrid testing method that replaces the rotor by a ducted fan at the model tower top. The fan can introduce a variable force which represents the total wind thrust by the rotor. This load is obtained from an aerodynamic simulation that is performed in synchrony with the test and it is fed in real time with the displacements of the platform provided by the acquisition system. Thus, the simulation considers the displacements of the turbine within the wind field and the relative wind speed on the rotor, including the effect of the aerodynamic damping on the tests. The method has been called “Software-in-the-Loop” (SiL). The method has been applied on a test campaign at the Ecole Centrale de Nantes wave tank of the OC4 semisubmersible 5MW wind turbine, with a scale factor of 1/45. The experimental results have been compared with equivalent numerical simulations of the floating wind turbine using the integrated code FAST. Simple cases as only steady wind and free decays with constant wind showed a good agreement with computations, demonstrating that the SiL method is able to successfully introduce the rotor scaled thrust and the effect of the aerodynamic damping on the global dynamics. Cases with turbulent wind and irregular waves showed better agreement with the simulations when mooring line dynamics and second order effects were included in the numerical models.


Author(s):  
Simone Di Carlo ◽  
Alessandro Fontanella ◽  
Alan Facchinetti ◽  
Sara Muggiasca ◽  
Federico Taruffi ◽  
...  

Abstract The scope of this work is to investigate if and how it is possible to estimate the incident wave elevation on a floating wind turbine, with the purpose of improved control strategies. A Kalman based algorithm is proposed, which receives as input the rigid motions of the floater and estimates the wave elevation hitting the floating platform. The structure of the observer is described and the estimator is tested numerically on the OC3-Hywind platform coupled with the 5-MW reference wind turbine from NREL. Limitations to the estimation procedure are discussed. Finally the algorithm is tested on experimental data coming from a wave basin experimental campaign on a floating wind turbine model. The algorithm still needs improvements, but results are encouraging in the development of this technology.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dongsheng Qiao ◽  
Jinping Ou

The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.


Author(s):  
Michael Borg ◽  
Anthony Viselli ◽  
Christopher K. Allen ◽  
Matthew Fowler ◽  
Christoffer Sigshøj ◽  
...  

Abstract As part of the process of deploying new floating offshore wind turbines, scale model testing is carried out to de-risk and verify the design of novel foundation concepts. This paper describes the testing of a 1:43 Froude-scaled model of the TetraSpar Demo floating wind turbine prototype that shall be installed at the Metcentre test facility, Norway. The TetraSpar floating foundation concept consists of a floater tetrahedral structure comprising of braces connected together through pinned connections, and a triangular keel structure suspended below the floater by six suspension lines. A description of the experimental setup and program at the Alfond W2 Ocean Engineering Lab at University of Maine is given. The objective of the test campaign was to validate the initial design, and contribute to the development of the final demonstrator design and numerical models. The nonlinear hydrodynamic characteristics of the design are illustrated experimentally and the keel suspension system is shown to satisfy design criteria.


Author(s):  
Pauline Louazel ◽  
Daewoong Son ◽  
Bingbin Yu

Abstract During the shutdown of a wind turbine, the turbine blades rotate from their typical operating angle to their typical idling angle (approximately 90 degrees) at a specific speed, called the blade pitch rate. This operation leads to rapid loss of thrust force on the turbine resulting in a corresponding heel response of the floating structure. This rapid variation of loads at the turbine also leads to large nacelle accelerations which are transferred to the bottom of the tower and consequently to the floating structure, making the turbine shutdowns, and specifically emergency shutdowns, of significance in the design and certification of the turbine, tower and floating structure. In case of an emergency shutdown (for instance due to a grid loss), the blades typically pitch from 0 degree to 90 degrees in approximately 20–35 seconds, whereas this time period can be more than 100 seconds in the case of a normal shutdown [6]. For fixed-bottom wind turbines, increasing the blade pitch rate leads to an increase of instantaneous loads at the nacelle and tower, leading to the emergency shutdown pitch rate being usually chosen to be as low as possible. In the case of a floating wind turbine, however, water/platform interaction effects such as wave induced damping on the floating platform, challenge this approach. Indeed, increasing the blade pitch rate can increase the effect of wave-induced damping on the floater and therefore reduce the loads on the overall structure. On the other hand, reducing the blade pitch rate during an emergency shutdown can reduce this damping effect and increase those loads, meaning that an optimal blade pitch rate for a fixed bottom turbine is not necessarily optimal for a floating wind turbine. This paper will examine the behavior of a floating offshore semi-submersible platform, the WindFloat, during turbine shutdown operations, with an emphasis on the blade pitch rate during an emergency shutdown.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 703 ◽  
Author(s):  
Juhun Song ◽  
Hee-Chang Lim

In this study, the typical ocean environment was simulated with the aim to investigate the dynamic response under various environmental conditions of a Tension Leg Platform (TLP) type floating offshore wind turbine system. By applying Froude scaling, a scale model with a scale of 1:200 was designed and model experiments were carried out in a lab-scale wave flume that generated regular periodic waves by means of a piston-type wave generator while a wave absorber dissipated wave energy on the other side of the channel. The model was designed and manufactured based on the standard prototype of the National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine. In the first half of the study, the motion and structural responses for operational wave conditions of the North Sea near Scotland were considered to investigate the performance of a traditional TLP floating wind turbine compared with that of a newly designed TLP with added mooring lines. The new mooring lines were attached with the objective of increasing the horizontal stiffness of the system and thereby reducing the dominant motion of the TLP platform (i.e., the surge motion). The results of surge translational motions were obtained both in the frequency domain, using the response amplitude operator (RAO), and in the time domain, using the omega arithmetic method for the relative velocity. The results obtained show that our suggested concept improves the stability of the platform and reduces the overall motion of the system in all degrees-of-freedom. Moreover, the modified design was verified to enable operation in extreme wave conditions based on real data for a 100-year return period of the Northern Sea of California. The loads applied by the waves on the structure were also measured experimentally using modified Morison equation—the formula most frequently used to estimate wave-induced forces on offshore floating structures. The corresponding results obtained show that the wave loads applied on the new design TLP had less amplitude than the initial model and confirmed the significant contribution of the mooring lines in improving the performance of the system.


Author(s):  
Andrew J. Goupee ◽  
Bonjun J. Koo ◽  
Richard W. Kimball ◽  
Kostas F. Lambrakos ◽  
Habib J. Dagher

Beyond many of Earth's coasts exists a vast deepwater wind resource that can be tapped to provide substantial amounts of clean, renewable energy. However, much of this resource resides in waters deeper than 60 m where current fixed bottom wind turbine technology is no longer economically viable. As a result, many are looking to floating wind turbines as a means of harnessing this deepwater offshore wind resource. The preferred floating platform technology for this application, however, is currently up for debate. To begin the process of assessing the unique behavior of various platform concepts for floating wind turbines, 1/50th scale model tests in a wind/wave basin were performed at the Maritime Research Institute Netherlands (MARIN) of three floating wind turbine concepts. The Froude scaled tests simulated the response of the 126 m rotor diameter National Renewable Energy Lab (NREL) 5 MW, horizontal axis Reference Wind Turbine attached via a flexible tower in turn to three distinct platforms, these being a tension leg-platform, a spar-buoy, and a semisubmersible. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with irregular sea states and dynamic winds. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine, which exhibited low swirl and turbulence intensity in the flow field. Recorded data from the floating wind turbine models include rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions, and accelerations at key locations on the nacelle, tower, and platform. A comprehensive overview of the test program, including basic system identification results, is covered in previously published works. In this paper, the results of a comprehensive data analysis are presented, which illuminate the unique coupled system behavior of the three floating wind turbines subjected to combined wind and wave environments. The relative performance of each of the three systems is discussed with an emphasis placed on global motions, flexible tower dynamics, and mooring system response. The results demonstrate the unique advantages and disadvantages of each floating wind turbine platform.


Sign in / Sign up

Export Citation Format

Share Document