Numerical Study on Expected Electrical Power of Linear Wave Energy Converter in Arrangement Condition

Author(s):  
Qiao Li ◽  
Motohiko Murai ◽  
Syu Kuwada

A linear electrical generator is a kind of device which can be used to wave energy converter, for directly converting mechanical energy of a floating structure into electrical energy. A wave farm consists of multiple wave energy converters which equipped in a sea area. In the present paper, a numerical model is proposed considering the interference effect in the multiple floating structures, and the controlling force of each linear electrical generator. Especially, the copper losses in the electrical generator is taken into account, when the electrical power is computed. At first, the controlling force coefficients are discussed to find their physical effects on heaving motion. In a case study, the heaving motions and electrical powers of the three floating structures are estimated in the straight arrangement and triangle arrangement. And the average electrical power is analyzed in different distances of the floating structures.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2964 ◽  
Author(s):  
Qiao Li ◽  
Motohiko Murai ◽  
Syu Kuwada

A linear electrical generator can be used on wave energy converter for converting the kinetic energy of a floating structure to the electricity. A wave farm consists of multiple wave energy converters which equipped in a sea area. In the present paper, a numerical model is proposed considering not only the interference effect in the multiple floating structures, but also the controlling force of each linear electrical generator. In particular, the copper losses in the electrical generator is taken into account, when the electrical power is computed. In a case study, the heaving motions and electrical powers of the multiple wave energy converters are estimated in the straight arrangement and triangle arrangement. In addition, the average electrical power is analyzed in different distances of the floating structures. The aim of this paper is to clear the relationship between the interference effect and electric powers from wave energy converters. This will be useful for deciding the arrangement of multiple wave energy converters.


2021 ◽  
Author(s):  
Xiang Zhou ◽  
Shangyan Zou ◽  
Wayne W. Weaver ◽  
Ossama Abdelkhalik

Abstract A permanent magnet linear electrical machine power takeoff (PTO) unit is simulated on the direct drive wave energy converter in this paper, which is controlled to provide the required reactive power. A shape-based control is implemented to maximize the wave energy production (mechanical PTO) with the limiting constraints on the electric drive. Further, the linear electrical machine design is optimized such that the electrical power output is maximized (e.g., reduced power losses). The numerical simulations are conducted using MATLAB/Simulink and the Simscape toolbox. Linear wave theory is applied in modeling the buoy dynamics. Additionally, the PTO unit is composed of a linear electrical machine, an ideal inverter, and an ideal energy storage system. The results show the proposed PTO tracks the reference control accurately. The electrical power output is significantly improved by limiting the current in the PTO compared to a passive control.


2016 ◽  
Vol 693 ◽  
pp. 484-490
Author(s):  
Ying Xue Yao ◽  
Hai Long Li ◽  
Jin Ming Wu ◽  
Liang Zhou

Duck wave energy converter has the advantages of high conversion efficiency, simple construction, low cost relative to other wave power device. In the paper, the numerical simulation of the response of the converter was calculated by the AQWA software which based on the three dimensional potential flow theories. The results show that the pitch angle appear the peak when the incident wave frequency is 1rad/s and the maximum of the pitch angle come out as the linear wave normally incident the duck body, which means duck wave energy converter can absorb more wave energy in this angular frequency. The above research can provide reference for the design of the duck wave energy converter.


Author(s):  
Majid A. Bhinder ◽  
Clive G. Mingham ◽  
Derek M. Causon ◽  
Mohammad T. Rahmati ◽  
George A. Aggidis ◽  
...  

This paper presents the findings from using several commercial computational fluid dynamics codes in a joint numerical and experimental project to simulate WRASPA, a new wave energy converter (WEC) device. A series of fully 3D non-linear simulations of WRASPA are presented. Three commercial codes STAR-CCM, CFX and FLOW-3D are considered for simulating the WRASPA device and final results are presented based on the use of Flow-3D. Results are validated by comparison to experimental data obtained from small scale tank tests undertaken at Lancaster University (LU). The primary aim of the project is to use numerical simulation to optimize the collector geometry for power production over a range of likely wave climates. A secondary aim is to evaluate the ability of commercial codes to simulate rigid body motion in linear and non-linear wave climates in order to choose the optimal code with respect to compute speed and ease of problem setup. Issues relating to the ability of a code in terms of numerical dissipation of waves, wave absorption, wave breaking, grid generation and moving bodies will all be discussed. The findings of this paper serve as a basis for an informed choice of commercial package for such simulations. However the capability of these commercial codes is increasing with every new release.


2017 ◽  
Vol 863 ◽  
pp. 175-182
Author(s):  
Yi Ming Zhu ◽  
Zi Rong Luo ◽  
Zhong Yue Lu ◽  
Jian Zhong Shang

This paper proposed a novel micro wave energy converter which can convert irregular wave energy into rotating mechanical energy, then into electrical energy. The device consists of an energy absorption part and an energy conversion part. In details, the blades are installed on the absorber circumferentially and averagely, which are capable of converting the vertical motion of the surface body to continuous rotation of the absorber and leading to a great increase in efficiency. A physical prototype was built to test the performance of the novel generator and optimize the design parameters. In the experiment part, a linear motion electric cylinder was used as the drive power to provide the heaving motion for the device. And the experiment platform was built for modeling a marine environment. Also, a data acquisition program was edited in Labview. Thus, the experiment analyzed the influence of amplitude, frequency, blade angle and resistance value to the output power, and then obtained the optimum parameters combination which can maximize the value of the output power. The result will provide reference for the device’s further application.


2016 ◽  
Vol 99 ◽  
pp. 1276-1286 ◽  
Author(s):  
Hui-Feng Yu ◽  
Yong-Liang Zhang ◽  
Si-Ming Zheng

2021 ◽  
Vol 13 (17) ◽  
pp. 9803
Author(s):  
Ji Woo Nam ◽  
Yong Jun Sung ◽  
Seong Wook Cho

The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.


Author(s):  
Blake P. Driscol ◽  
Andrew Gish ◽  
Ryan G. Coe

Abstract The aim of this study is to determine whether multiple U.S. Navy autonomous underwater vehicles (AUVs) could be supported using a small, heaving wave energy converter (WEC). The U.S. Navy operates numerous AUVs that need to be charged periodically onshore or onboard a support ship. Ocean waves provide a vast source of energy that can be converted into electricity using a wave energy converter and stored using a conventional battery. The Navy would benefit from the development of a wave energy converter that could store electrical power and autonomously charge its AUVs offshore. A feasibility analysis is required to ensure that the WEC could support the energy needs of multiple AUVs, remain covert, and offer a strategic military advantage. This paper investigates the Navy’s power demands for AUVs and decides whether or not these demands could be met utilizing various measures of WEC efficiency. Wave data from a potential geographic region is analyzed to determine optimal locations for the converter in order to meet the Navy’s power demands and mission set.


Sign in / Sign up

Export Citation Format

Share Document