Projected Changes in the Occurrence of Extreme and Rogue Waves in Future Climate in the North Atlantic

Author(s):  
Odin Gramstad ◽  
Elzbieta Bitner-Gregersen ◽  
Erik Vanem

We investigate the future wave climate in the North Atlantic with respect to extreme events as well as on wave parameters that have previously not been considered in much details in the perspective of wave climate change, such as those associated with occurrence of rogue waves. A number of future wave projections is obtained by running the third generation wave model WAM with wind input derived from several global circulation models. In each case the wave model has been run for the 30-year historical period 1971–2000 and the future period 2071–2100 assuming the two different future climate scenarios RCP 4.5 and RCP 8.5. The wave model runs have been carried out by the Norwegian Meteorological Institute in Bergen, and the climate model result are taken from The Coupled Model Intercomparison Project phase 5 - CMIP5. In addition to the standard wave parameters such as significant wave height and peak period the wave model runs provided the full two-dimensional wave spectrum. This has enabled the study of a larger set of wave parameters. The focus of the present study is the projected future changes in occurrence of extreme sea states and extreme and rogue waves. The investigations are limited to parameters related to this in a few selected locations in the North Atlantic. Our results show that there are large uncertainties in many of the parameters considered in this study, and in many cases the different climate models and different model scenarios provide contradicting results with respect to the predicted change from past to future climate. There are, however, some situations for which a clearer tendency is observed.

Author(s):  
Vengatesan Venugopal ◽  
Arne Vögler

Abstract This paper presents the nature of turbulence parameters produced from 3-dimensional numerical simulations using an ocean scale wave-tidal current model applied to tidal energy sites in the Orkney waters in the United Kingdom. The MIKE 21/3 coupled wave-current model is chosen for this study. The numerical modelling study is conducted in two stages. First, a North Atlantic Ocean large-scale wave model is employed to simulate wave parameters. Spatial and temporal wind speeds extracted from the European Centre for Medium Range Weather Forecast (ECMWF) is utilised to drive the North Atlantic wave model. Secondly, the wave parameters produced from the North Atlantic model are used as boundary conditions to run a coupled wave-tidal current model. A turbulence model representing the turbulence and eddy viscosity within the coupled model is chosen and the turbulence kinetic energy (TKE) due to wave-current interactions are computed. The coupled model is calibrated with Acoustic Doppler and Current Profiler (ADCP) measurements deployed close to a tidal energy site in the Inner Sound of the Pentland Firth. The model output parameters such as the current speed, TKE, horizontal and vertical eddy viscosities, significant wave height, peak wave period and wave directions are presented, and, their characteristics are discussed in detail.


2015 ◽  
Vol 28 (2) ◽  
pp. 574-596 ◽  
Author(s):  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Matthew S. Mizielinski ◽  
Marie-Estelle Demory ◽  
Reinhard Schiemann ◽  
...  

Abstract The U.K. on Partnership for Advanced Computing in Europe (PRACE) Weather-Resolving Simulations of Climate for Global Environmental Risk (UPSCALE) project, using PRACE resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model Global Atmosphere 3 (GA3) configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km), and N512 (25 km), in order to study the impact of model resolution on high-impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and northwestern Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African easterly waves and the African easterly jet. However, the intensity of the modeled tropical cyclones as measured by 10-m wind speed remains weak, and there is no indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of 50% in the frequency of Southern Hemisphere tropical cyclones, whereas in the Northern Hemisphere there is a reduction in the North Atlantic and a shift in the Pacific with peak intensities becoming more common in the central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer weak storms and proportionally more strong storms.


Author(s):  
Elzbieta M. Bitner-Gregersen ◽  
Alessandro Toffoli

Wave steepness is an important parameter not only for design and operations of marine structures but also for statistics of surface elevation as well as occurrence of rogue waves. The present study investigates potential changes of wave steepness in the future wave climate in the North Atlantic. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios with radiative forcing of 4.5 and 8.5 W/m2 by the end of the 21st century have been selected to project wave conditions in the North Atlantic. The analysis includes total sea, wind sea and swell. Changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Long-term probability description of wave steepness variations is proposed. Consequences of changes in wave steepness for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.


Author(s):  
Jelena Janjić ◽  
Sarah Gallagher ◽  
Emily Gleeson ◽  
Frédéric Dias

Using wind speeds and sea ice fields from the EC-Earth global climate model to run the WAVEWATCH III model, we investigate the changes in the wave climate of the northeast Atlantic by the end of the 21st century. Changes in wave climate parameters are related to changes in wind forcing both locally and remotely. In particular, we are interested in the behavior of large-scale atmospheric oscillations and their influence on the wave climate of the North Atlantic Ocean. Knowing that the North Atlantic Oscillation (NAO) is related to large-scale atmospheric circulation, we carried out a correlation analysis of the NAO pattern using an ensemble of EC-Earth global climate simulations. These simulations include historical periods (1980–2009) and projected changes (2070–2099) by the end of the century under the RCP4.5 and RCP8.5 Representative Concentration Pathway (RCP) forcing scenarios with three members in each RCP wave model ensemble. In addition, we analysed the correlations between the NAO and a range of wave parameters that describe the wave climate from EC-Earth driven WAVEWATCH III model simulation over the North Atlantic basin, focusing on a high resolution two-way nested grid over the northeast Atlantic. The results show a distinct decrease by the end of the century and a strong positive correlation with the NAO for all wave parameters observed.


2019 ◽  
Vol 32 (6) ◽  
pp. 1677-1691 ◽  
Author(s):  
Øyvind Breivik ◽  
Ana Carrasco ◽  
Joanna Staneva ◽  
Arno Behrens ◽  
Alvaro Semedo ◽  
...  

Abstract The future Stokes drift climate is investigated using a global wave climate projection (2071–2100) forced with EC-EARTH winds under the RCP8.5 scenario. The future climate run is compared against a historical run (1976–2005). The Stokes drift climate is analyzed in terms of Stokes transport and surface Stokes drift. The impact on Stokes drift from changes to the wind, wind sea, and swell climate is identified. The consequences for upper-ocean mixing and circulation are studied by investigating the turbulent Langmuir number and the Stokes depth. The historical climate run is also compared to a hindcast with ERA-Interim forcing. Systematic discrepancies due to differences in resolution and model physics are identified, but no fundamental weaknesses are uncovered that should adversely affect the future run. As the surface Stokes drift is largely dictated by high-frequency waves, it is to a great degree controlled by changes to the local wind field, whereas the Stokes transport is more sensitive to swell. Both are expected to increase in the Southern Ocean by about 15%, while the North Atlantic sees a decrease of about 10%. The Stokes depth and the turbulent Langmuir number are set to change by about ±20% and ±10%, respectively. The changes to the Stokes depth suggest a deeper impact of the Coriolis–Stokes force in the Southern Ocean and a decrease in the northern extratropics. Changes to the KPP Langmuir-enhancement factor suggests potentially increased mixing in the Southern Ocean and a reduction in the North Atlantic and the North Pacific.


2019 ◽  
Vol 32 (10) ◽  
pp. 2673-2689 ◽  
Author(s):  
Melissa Gervais ◽  
Jeffrey Shaman ◽  
Yochanan Kushnir

Abstract In future climate simulations there is a pronounced region of reduced warming in the subpolar gyre of the North Atlantic Ocean known as the North Atlantic warming hole (NAWH). This study investigates the impact of the North Atlantic warming hole on atmospheric circulation and midlatitude jets within the Community Earth System Model (CESM). A series of large-ensemble atmospheric model experiments with prescribed sea surface temperature (SST) and sea ice are conducted, in which the warming hole is either filled or deepened. Two mechanisms through which the NAWH impacts the atmosphere are identified: a linear response characterized by a shallow atmospheric cooling and increase in sea level pressure shifted slightly downstream of the SST changes, and a transient eddy forced response whereby the enhanced SST gradient produced by the NAWH leads to increased transient eddy activity that propagates vertically and enhances the midlatitude jet. The relative contributions of these two mechanisms and the details of the response are strongly dependent on the season, time period, and warming hole strength. Our results indicate that the NAWH plays an important role in midlatitude atmospheric circulation changes in CESM future climate simulations.


2020 ◽  
Vol 33 (3) ◽  
pp. 959-975
Author(s):  
Alexandria Downs ◽  
Chanh Kieu

AbstractVarious modeling and observational studies have suggested that tropical cyclone (TC) intensity tends to increase in the future due to projected warmer sea surface temperature (SST). This study examines the effects of the tropospheric stratification that could potentially offset the direct increase of TC intensity associated with the warmer SST. Using reanalysis datasets and TC records in the northwestern Pacific and the North Atlantic basins, it is shown that there exists a consistently negative correlation between the annually averaged TC intensity and the basinwide average of the tropospheric static stability. This negative correlation is more robust in the northwestern Pacific basin when using the TC lifetime maximum intensity but is somewhat less significant in the North Atlantic basin. Further separation of the troposphere into a lower (1000–500 hPa) and an upper layer (500–200 hPa) reveals that it is the upper-tropospheric static stability that plays a more dominant role in governing the TC intensity variability. The negating effects of a stable troposphere on TC intensity as found in this study suggest a partial offset of the projected increase in the TC potential intensity due to the future warmer SST. Thus, the tropospheric static stability is one of the key large-scale factors that need to be properly taken into account in studies of long-term TC intensity change.


2019 ◽  
Vol 58 (7) ◽  
pp. 1509-1522 ◽  
Author(s):  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Helene B. Erlandsen

AbstractA method for empirical–statistical downscaling was adapted to project seasonal cyclone density over the North Atlantic Ocean. To this aim, the seasonal mean cyclone density was derived from instantaneous values of the 6-h mean sea level pressure (SLP) reanalysis fields. The cyclone density was then combined with seasonal mean reanalysis and global climate model projections of SLP or 500-hPa geopotential height to obtain future projections of the North Atlantic storm tracks. The empirical–statistical approach is computationally efficient because it makes use of seasonally aggregated cyclone statistics and allows the future cyclone density to be estimated from the full ensemble of available CMIP5 models rather than from a smaller subset. However, the projected cyclone density in the future differs considerably depending on the choice of predictor, SLP, or 500-hPa geopotential height. This discrepancy suggests that the relationship between the cyclone density and SLP, 500-hPa geopotential height, or both is nonstationary; that is, that the statistical model depends on the calibration period. A stationarity test based on 6-hourly HadGEM2-ES data indicated that the 500-hPa geopotential height was not a robust predictor of cyclone density.


Sign in / Sign up

Export Citation Format

Share Document