Experimental Study of Hydrodynamic Responses of a Single Floating Storage Tank With Internal Fluid

Author(s):  
Zhang Chi ◽  
Allan R. Magee ◽  
Wan Ling ◽  
Chien Ming Wang ◽  
Øyvind Hellan

When floating structure with internal fluid compartment is close to other structures, the multibody interaction problem needs to be addressed in addition to the internal fluid influence. Furthermore, shallow water effects become important, especially when the gap between the floating structure and the sea floor is small. These issues are encountered when designing a novel floating oil storage facilities in nearshore area. To investigate these issues, floating models under 1:50 scale are built to perform model tests. The test set-up uses a set of flexible constraints working as fenders placed on frames to restrain the motions of the models in the horizontal plane. Various tests in waves are carried out to measure motion responses of single model in waves with different filling levels and stiffness of “fenders”. The reaction forces on the “fenders” are also measured. Several regular wave conditions are selected to perform tests on double model system to investigate multibody interactions under the influence of internal fluid and effects of waves between the tanks. The drag forces for both single model and double models are measured by performing model tests under constant current from different directions, to check the shielding effects. The tests are performed in shallow-water wave basin, and the constant currents tests are performed by towing the models in a flume tank. Both facilities are located at National University of Singapore (NUS). This paper presents the detailed setting of the model tests. The single model’s RAOs with 20% filling level of internal fluid are given to demonstrate the influence of internal fluid on the motions. The performances of a single tank, including six DOF motions are shown. The results will be used for validation of numerical analysis results in the near future.

Author(s):  
Sheng Xu ◽  
Chunyan Ji ◽  
C. Guedes Soares

Considering the activities of floating systems pushing to the ultra-deepwater, the full scale mooring system needs to be truncated in order to carry out model tests in wave basin with reasonable model scale. In this paper, a Semi-Submersible moored by a catenary mooring system, which operates in 1500m water depth is truncated at 200m water depth. The mooring induced damping of truncated mooring system and prototype mooring system in 100 year typhoon condition in South China Sea are studied experimentally and numerically. The de-couple technique is applied to obtain truncated mooring damping, which is implemented by inputting the vessel six DOF motion responses and solving the mooring tensions, then decompose mooring tension in x, y and z directions. The vessel six DOF motion responses were measured in the model tests. For the full depth mooring system, the fully coupled dynamic analysis is carried out to study mooring induced damping. The results of truncated mooring damping will be compared with full depth mooring damping.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


Author(s):  
Neil Williams ◽  
Steve Leverette ◽  
Sean Bian ◽  
Sean Large ◽  
Peimin Cao
Keyword(s):  

This paper discusses the development of a dry-tree semisubmersible (DTS) platform concept appropriate for deployment in non-hurricane/non-cyclonic environments worldwide, and the verification of the concept through wave basin model tests. An example configuration is presented for an application in 2,100 m water depth offshore Brazil.


Author(s):  
Claudio A. Rodríguez ◽  
F. Taveira-Pinto ◽  
P. Rosa-Santos

A new concept of wave energy device (CECO) has been proposed and developed at the Hydraulics, Water Resources and Environment Division of the Faculty of Engineering of the University of Porto (FEUP). In a first stage, the proof of concept was performed through physical model tests at the wave basin (Rosa-Santos et al., 2015). These experimental results demonstrated the feasibility of the concept to harness wave energy and provided a preliminary assessment of its performance. Later, an extensive experimental campaign was conducted with an enhanced 1:20 scale model of CECO under regular and irregular long and short-crested waves (Marinheiro et al., 2015). An electric PTO system with adjustable damping levels was also installed on CECO as a mechanism of quantification of the WEC power. The results of regular waves tests have been used to validate a numerical model to gain insight into different potential configurations of CECO and its performance (López et al., 2017a,b). This paper presents the results and analyses of the model tests in irregular waves. A simplified approach based on spectral analyses of the WEC motions is presented as a means of experimental assessment of the damping level of the PTO mechanism and its effect on the WEC power absorption. Transfer functions are also computed to identify nonlinear effects associated to higher waves and to characterize the range of periods where wave absorption is maximized. Furthermore, based on the comparison of the present experimental results with those corresponding to a linear numerical potential model, some discussions are addressed regarding viscous and other nonlinear effects on CECO performance.


Author(s):  
Johyun Kyoung ◽  
Chan-Kyu Yang ◽  
Kostas Lambrakos ◽  
Jim O’Sullivan

The global hull motion performance of the HVS semisubmersible for dry tree application is investigated with model tests. The HVS semisubmersible, which has been validated for low heave motion and VIM (Vortex Induced Motion) response, was modified for dry tree application. As a base case, the modification includes a keel plate with riser keel guides at the level of the pontoons. The keel plate is optimally designed to increase the hull heave period to compensate for the heave period reduction in the HVS semisubmersible due to the riser tensioners for the dry tree application. The plate also provides additional viscous damping that decreases the heave response at the heave natural period. The model tests were performed to investigate the in-place hull motion performance for the Gulf of Mexico environmental conditions. The pneumatic riser tensioners were modeled using a spring with dual stiffness. Because of the water depth limit in the wave basin, a truncated mooring was used to simulate the full scale prototype mooring system. An alternate modification to the HVS semisubmersible that includes pontoon plates was also tested and the measured response was compared to the response of the base case. The measured hull responses were correlated with MLTSIM, a Technip in-house nonlinear time-domain 6-DOF motion analysis program.


Author(s):  
Carl Trygve Stansberg ◽  
Trygve Kristiansen

Slowly varying motions and drift forces of a large moored ship in random waves at 35m water depth are investigated by an experimental wave basin study in scale 1:50. A simple horizontal mooring set-up is used. A second-order wave correction is applied to minimize “parasitic” long waves. The effect on the ship motion from the correction is clearly seen, although less in random wave spectra than in pure bi-chromatic waves. Empirical quadratic transfer functions (QTFs) of the surge drift force are found by use of cross-bi-spectral analysis, in two different spectra have been obtained. The QTF levels increase significantly with lower wave frequencies (except at the diagonal), which is special for finite and shallow water. Furthermore, the QTF levels frequencies at low frequencies increase significantly out from the QTF diagonal. Thus Newman’s approximation should preferrably not be used in these cases. Using the LF waves as a direct excitation in a “linear” ship force analysis gives random records that compare reasonably well with those from the cross-bi-spectral analysis. This confirms the idea that the drift forces in shallow water are closely correlated to the second-order potential, and thereby by the second-order LF waves.


Author(s):  
Trygve Kristiansen ◽  
Odd M. Faltinsen

This work focuses on the hydrodynamical problem of a Liquid Natural Gas (LNG) carrier near a Gravity Based Structure (GBS) -type offshore terminal subject to incoming waves in medium deep to shallow water conditions. The work is restricted to 2D, and the ship is restrained from moving. The resonant behavior of the fluid in the gap between the ship and the terminal is investigated. The problem is investigated by means of a numerical model and model tests. Potential theory is assumed, and a linear as well as a nonlinear time-domain numerical wavetank based on a boundary element method with a mixed Eulerian–Lagrangian approach is implemented for this purpose. Model tests (near 2D) of a midship section near a vertical wall are carried out in a 26.5m long and 0.595m wide wave flume in model scale 1:70. In full scale the ship beam is 45m and the ship draft is 12m. The ship model is constructed in such a way as to avoid flow separation, i.e., no sharp corners. Several parameters are varied: water depth, wave period, and wave steepness. Wave elevation is measured at 12 locations.


Author(s):  
V. Jaksic ◽  
C. S. Wright ◽  
J. Murphy ◽  
C. Afeef ◽  
S. F. Ali ◽  
...  

In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments.


Author(s):  
Joost Sterenborg ◽  
Nicola Grasso ◽  
Rogier Schouten ◽  
Arjen Tjallema

Abstract One of the aims of The Ocean Cleanup is to develop technologies to extract plastic pollution from the world’s oceans. Several concepts of passive floating systems were considered that are supposed to confine plastics to ease their collection. Such concepts consist of a floating member and a submerged flexible skirt and have in common that their span is generally more than 500 meters. Consequently, fluid-structure interaction plays an important role in the response of such a floating system. To support numerical simulations, MARIN carried out extensive model tests on a 120 meter system section of the final concept, with focus on the fluid-structure interaction (FSI) of the submerged skirt in operating conditions and in towing configuration. The ability to capture plastics was not investigated in these model tests. Novel for wave-basin tests were non-intrusive measurements using underwater Digital Image Correlation (DIC) to obtain the displacements and deformations of the flexible skirt. DIC proved to be a capable measurement technique for this type of structure in combination with a wave basin. Detailed quantitative data on skirt motions and deformations were delivered and the last concept of the cleanup system was tested in the towing configuration and operational configuration.


Sign in / Sign up

Export Citation Format

Share Document