Validation of a Quasi-Linear Numerical Model of a Pitching Wave Energy Converter in Close Proximity to a Fixed Structure

Author(s):  
Pilar Heras ◽  
Sarah Thomas ◽  
Morten Kramer

Although linear theory is often used to analyse wave energy devices, it is in many cases too simplistic. Many wave energy converters (WECs) exceed the key linear theory assumption of small amplitudes of motion, and require the inclusion of non-linear forces. A common approach is to use a hybrid frequency-time domain model based on the Cummins equation with hydro-dynamic inputs coming from linear wave theory (Ref. [1]). Published experimental data is sparse (Ref. [2]) and the suitability for the broad variety of WEC technologies has yet to be proven. This paper focuses on the challenges faced when attempting to validate a numerical model of a WEC using a variety of scaled physical tests in a waveflume. The technology used as a case study in this paper is a pitching WEC in close proximity to a fixed structure. Challenges are presented relating to waveflume effects and obtaining accurate physical input parameters to the numerical model.

Author(s):  
Pedro C. Vicente ◽  
Anto´nio F. O. Falca˜o ◽  
Paulo A. P. Justino

Floating point absorbers devices are a large class of wave energy converters for deployment offshore, typically in water depths between 40 and 100m. As floating oil and gas platforms, the devices are subject to drift forces due to waves, currents and wind, and therefore have to be kept in place by a proper mooring system. Although similarities can be found between the energy converting systems and floating platforms, the mooring design requirements will have some important differences between them, one of them associated to the fact that, in the case of a wave energy converter, the mooring connections may significantly modify its energy absorption properties by interacting with its oscillations. It is therefore important to examine what might be the more suitable mooring design for wave energy devices, according to the converters specifications. When defining a mooring system for a device, several initial parameters have to be established, such as cable material and thickness, distance to the mooring point on the bottom, and which can influence the device performance in terms of motion, power output and survivability. Different parameters, for which acceptable intervals can be established, will represent different power absorptions, displacements from equilibrium position, load demands on the moorings and of course also different costs. The work presented here analyzes what might be, for wave energy converter floating point absorber, the optimal mooring configuration parameters, respecting certain pre-established acceptable intervals and using a time-domain model that takes into account the non-linearities introduced by the mooring system. Numerical results for the mooring forces demands and also motions and absorbed power, are presented for two different mooring configurations for a system consisting of a hemispherical buoy in regular waves and assuming a liner PTO.


Author(s):  
H. C. Zhang ◽  
D. L. Xu ◽  
Q. H. Li

Integrating an array of buoys type converters with a flexible runway can be a viable option for cost-sharing between wave energy capturing devices and ocean space utilization structures, and thus enhance the cost-effectiveness of wave energy utilization. In this study, a configuration of multiple buoys supporting a runway is proposed. Hydrodynamic interactions among the buoys are analyzed using an exact algebraic method based on linear wave theory in the frequency domain. A parametric governing equation of compound wave energy converter referred to as a wave farm is formulated by using Hamilton’s principle which can be discretized by using Galerkin method. The effects of wave condition and the parameters of PTO on the wave energy absorption and dynamic characteristics of a runway are analyzed. This research work is aimed to provide a theoretical guideline for wave energy converters design.


Author(s):  
François Charrayre ◽  
Christophe Peyrard ◽  
Michel Benoit ◽  
Aurélien Babarit

Knowledge of the wave perturbation caused by an array of Wave Energy Converters (WEC) is of great concern, in particular for estimating the interaction effects between the various WECs and determining the modification of the wave field at the scale of the array, as well as possible influence on the hydrodynamic conditions in the surroundings. A better knowledge of these interactions will also allow a more efficient layout for future WEC farms. The present work focuses on the interactions of waves with several WECs in an array. Within linear wave theory and in frequency domain, we propose a methodology based on the use of a BEM (Boundary Element Method) model (namely Aquaplus) to solve the radiation-diffraction problem locally around each WEC, and to combine it with a model based on the mild slope equation at the scale of the array. The latter model (ARTEMIS software) solves the Berkhoff’s equation in 2DH domains (2 dimensional code with a z-dependence), considering irregular bathymetries. In fact, the Kochin function (a far field approximation) is used to propagate the perturbations computed by Aquaplus into Artemis, which is well adapted for a circular wave representing the perturbation of an oscillating body. This approximation implies that the method is only suitable for well separated devices. A main advantage of this coupling technique is that Artemis can deal with variable bathymetry. It is important when the wave farm is in shallow water or in nearshore areas. The methodology used for coupling the two models, with the underlying assumptions is detailed first. Validations test-cases are then carried out with simple bodies (namely heaving vertical cylinders) to assess the accuracy and efficiency of the coupling scheme. These tests also allow to analyze and to quantify the magnitude of the interactions between the WECs inside the array.


2014 ◽  
Vol 501-504 ◽  
pp. 1919-1926
Author(s):  
Long Fei Yu ◽  
Liang Sheng Zhu

In real sea state, Ocean energy devices to work hard to stabilize, or even destroyed. Based on Airy wave theory, Movement and force of heaving cylindrical wave-energy converter (WEC) was analyzed under the complex marine state. Then setting the South China coast as the environmental background, and simulating and computing the motion response of the buoy and the mooring system under various sea conditions. The computational data show that complex mechanical response was happened and the mooring system (SM) has excellent mooring performance. The research results have practical significance for heaving cylindrical WEC survival design under real sea conditions.


2020 ◽  
Vol 53 (2) ◽  
pp. 12334-12339
Author(s):  
M. Bonfanti ◽  
F. Carapellese ◽  
S.A. Sirigu ◽  
G. Bracco ◽  
G. Mattiazzo

Author(s):  
Thiago S. Hallak ◽  
José F. Gaspar ◽  
Mojtaba Kamarlouei ◽  
Miguel Calvário ◽  
Mário J. G. C. Mendes ◽  
...  

This paper presents a study regarding a novel hybrid concept for both wind and wave energy offshore. The concept resembles a semi-submersible wind platform with a larger number of columns. Wave Energy Devices such as point absorbers are to be displayed around the unit, capturing wave energy while heaving and also enhancing the stability of the platform. In this paper, a first numerical study of the platform’s hull, without Wave Energy Converters, is carried out. Experiments in wave basin regarding the same unit have been conducted and the results are presented and compared to the numerical ones. Both stability and seakeeping performances are assessed and compared.


2013 ◽  
Vol 9 (2) ◽  
pp. 790-798 ◽  
Author(s):  
Zanxiang Nie ◽  
Xi Xiao ◽  
Richard McMahon ◽  
Peter Clifton ◽  
Yunxiang Wu ◽  
...  

Author(s):  
Jiajun Song ◽  
Ossama Abdelkhalik ◽  
Shangyan Zou

Abstract This paper presents an optimization approach to design ax-isymmetric wave energy converters (WECs) based on a nonlinear hydrodynamic model. This paper shows optimal nonlinear shapes of buoy can be generated by combing basic shapes in an optimal sense. The time domain non-linear Froude-Krylov force can be computed for a complex buoy shape, by adopting analytical formulas of its basic shape components. The time domain Forude-Krylov force is decomposed into its dynamic and static components, and then contribute to the calculation of the excitation force and the hydrostatic force. A non-linear control is assumed in the form of the combination of linear and nonlinear damping terms. A variable size genetic algorithm (GA) optimization tool is developed to search for the optimal buoy shape along with the optimal control coefficients simultaneously. Chromosome of the GA tool is designed to improve computational efficiency and to leverage variable size genes to search for the optimal non-linear buoy shape. Different criteria of wave energy conversion can be implemented by the variable size GA tool. Simulation results presented in this paper show that it is possible to find non-linear buoy shapes and non-linear controllers that take advantage of non-linear hydrodynamics to improve energy harvesting efficiency with out adding reactive terms to the system.


1986 ◽  
Vol 1 (20) ◽  
pp. 97
Author(s):  
Jong-Sup Lee ◽  
Toru Sawaragi ◽  
Ichiro Deguchi

Equations for wave kinematics and wave dynamics based on small amplitude wave theory have been used in the prediction of wave deformations and wave-indused currents. However, the applicability of the linear wave theory is questionable in a river mouth where forced wave breaking and strong wave-current interaction take place. A numerical model based on the non-linear dispersive wave theory has been developed, the results by this model was compared with the values of the experiments and the linear theory. Wave transformations including shoaling, wave-current interaction and wave breaking by the model showed a good agreement with the experimental result. In the prediction of wave-induced currents, the excess momentum flux (Pxx) computed by the model has more reasonable value than the radiation stress ( Sxx) calculated by the small amplitude wave theory.


Sign in / Sign up

Export Citation Format

Share Document