scholarly journals NUMERICAL MODEL OF BREAKING WAVE AROUND A RIVER MOUTH

1986 ◽  
Vol 1 (20) ◽  
pp. 97
Author(s):  
Jong-Sup Lee ◽  
Toru Sawaragi ◽  
Ichiro Deguchi

Equations for wave kinematics and wave dynamics based on small amplitude wave theory have been used in the prediction of wave deformations and wave-indused currents. However, the applicability of the linear wave theory is questionable in a river mouth where forced wave breaking and strong wave-current interaction take place. A numerical model based on the non-linear dispersive wave theory has been developed, the results by this model was compared with the values of the experiments and the linear theory. Wave transformations including shoaling, wave-current interaction and wave breaking by the model showed a good agreement with the experimental result. In the prediction of wave-induced currents, the excess momentum flux (Pxx) computed by the model has more reasonable value than the radiation stress ( Sxx) calculated by the small amplitude wave theory.

2011 ◽  
Vol 1 (32) ◽  
pp. 7 ◽  
Author(s):  
Takashi Okamoto ◽  
Conceição Juana Fortes ◽  
David R. Basco

Wave breaking is the most important event in nearshore hydrodynamics because of the energy exertion and mass transportation during the event drive all the nearshore phenomena, such as wave set-up/down, long shore current, and nearshore circulation. Wave celerity is a key parameter in wave breaking especially for the mass transportation, the energy dissipation during the wave breaking event, and the wave breaking index calculation, for example. There are many models to calculate the wave celerity during the breaking event (bore propagation speed) and it is well known that the bore propagation speed is faster than that is given by linear wave theory. But Okamoto et al. (2008) found the bore propagation speed at the termination location of wave breaking becomes much slower than the theoretical estimation when the termination of wave breaking occurs on inversely sloped bottom. In this paper, the bore propagation speed at the termination location of wave breaking is examined with the experimental data collected in a wave tank with simplified bar-trough beach settings. Comparisons with theoretical models are presented. Fourier analysis is performed to investigate the evolution of higher harmonics and synthesized time series, which is a simple summation of linear wave components, is constructed by using the obtained information to calculate the wave celerity during and after the wave breaking. Calculation result reveals that as the breaking wave approaches to the termination, the bore propagation speed decreases towards the value which can be explained by the existence of slowly and independently propagating higher harmonics.


2002 ◽  
Vol 456 ◽  
pp. 295-318 ◽  
Author(s):  
YING LI ◽  
FREDRIC RAICHLEN

The run-up of non-breaking and breaking solitary waves on a uniform plane beach connected to a constant-depth wave tank was investigated experimentally and numerically. If only the general characteristics of the run-up process and the maximum run-up are of interest, for the case of a breaking wave the post-breaking condition can be simplified and represented as a propagating bore. A numerical model using this bore structure to treat the process of wave breaking and subsequent shoreward propagation was developed. The nonlinear shallow water equations (NLSW) were solved using the weighted essentially non-oscillatory (WENO) shock capturing scheme employed in gas dynamics. Wave breaking and post-breaking propagation are handled automatically by this scheme and ad hoc terms are not required. A computational domain mapping technique was used to model the shoreline movement. This numerical scheme was found to provide a relatively simple and reasonably good prediction of various aspects of the run-up process. The energy dissipation associated with wave breaking of solitary wave run-up (excluding the effects of bottom friction) was also estimated using the results from the numerical model.


1976 ◽  
Vol 1 (15) ◽  
pp. 133
Author(s):  
Hiroshi Nakamura

The field observations on wave pressures on large circular cylindrical structures are performed at the cooling water intake structure for Hamaoka nuclear power plant, which is located at the coast of Pacific Ocean. In this report, the results of the field observation on wave pressures are compared with the results of the calculation by small amplitude wave theory considering wave diffraction around the cylinder.


Author(s):  
Z. Y. Tay ◽  
C. M. Wang

Presented herein are the hydroelastic responses of two large box-like floating modules that are placed adjacent to each other. These two floating modules form the floating fuel storage facility (FFSF). Owing to the small draft when compared to the length dimensions, the zero-draft assumption is commonly adopted in the modeling of very large floating structures (VLFS) as plates for hydroelastic analysis. However, such an assumption is not applicable to the considered floating modules since the effect of draft on the hydroelastic response is significant when the modules are loaded with fuel. A numerical model taking into account the draft effect is hence developed in order to predict correctly the hydroelastic response and hydrodynamic interactions of floating storage modules placed side-by-side. The floating storage modules are modeled as plates where an improved Mindlin plate element, developed by coupling the reduced integration method and the additional non-conforming modes, is used. Such a plate element does not exhibit spurious modes and shear locking phenomena, thereby making it applicable to both thin and thick plate models. Furthermore, the Mindlin plate theory predicts better stress resultants as compared with its Kirchhoff plate counterpart. The linear wave theory is used to model the water waves. The wave-induced deflections obtained from the numerical model are validated by experimental tests.


Author(s):  
Bo Peng ◽  
Ning Ma ◽  
Xiechong Gu

Wave-current interaction is a common phenomenon in real sea and has significant influence on sea conditions, thus threatening the safety of offshore structures. Waves countering current is one of the main reasons for occurrence of rogue waves, which imperils offshore structures and is of much importance for research. Based on Computational Fluid Dynamics (CFD), the simulation of viscous flow for wave generation in a Circulating Water Channel (CWC) has been carried out. In the calculation model, the motion of an oscillating flap type wave maker is simulated to generate specified waves by controlling movement of dynamic mesh in numerical model. Smoothing and local refreshing of dynamic meshes have been done to adapt meshes. Then, viscous flow simulation of wave generation among current in numerical tank is accomplished by using Reynolds-Averaged-Navier-Stokes (RANS) equation, renormalization group method based (RNG-based) k-ε turbulence model and Volume of Fluid (VOF) method as treatment of free surface. Both waves propagating along and against current have been investigated. To validate the numerical model, a part of calculation results are compared with the experimental results in CWC for regular wave propagating along current. Furthermore, calculations based on linear wave theory and modified nonlinear Schrödinger Equation (mNLS) are also performed. For further investigation of occurrence of rogue wave in deep water, focusing technique is adopted by using transient water wave. Results show that wave height and group velocity of wave sequence would change notably when wave propagates along preexisting large-scale current. Wave height decreases as the velocity of uniform current increases and wave sequence arrives at given position earlier when propagating on faster current. On the other hand, on a counter current, waves are steepened and wave height increases dramatically. Based on the numerical results, several characteristics and principal values such as wave height and asymmetry have been discussed. The effects of viscous flow and wave-current interaction on prediction of rogue waves are analyzed and evaluated. Accordingly, some concluding remarks on improving of numerical model of rogue wave are given.


Author(s):  
Shaofeng Wang ◽  
Torben J. Larsen

Offshore wind turbines are subjected to combined static and cyclic loads due to its self weight, wind, current and waves. For the design of support structures, a point of concern is whether the highly varying loads may cause cyclic degradation of the soil leading to a permanent undesired pile settlement and tilting for the wind turbine. In particular during a severe storm, the large cyclic loads are being more critical as the wind and waves are typically from a single direction. The DTU 10MW wind turbine supported by a jacket at 33 m water depth is considered in this study, where the piles are axially loaded in order to bear the moment under wind and wave actions. This paper investigates the cyclic loads using traditional linear irregular waves and fully nonlinear irregular waves realized from the wave solver Ocean-Wave3D previously validated until near-breaking wave conditions. This study shows that the nonlinear irregular waves introduce more extreme cyclic loads, which result in significantly larger pile settlement than using linear wave realizations. For the case in this study, linear wave theory underestimates pile settlement at least 30% compared to nonlinear wave realizations.


Author(s):  
Pilar Heras ◽  
Sarah Thomas ◽  
Morten Kramer

Although linear theory is often used to analyse wave energy devices, it is in many cases too simplistic. Many wave energy converters (WECs) exceed the key linear theory assumption of small amplitudes of motion, and require the inclusion of non-linear forces. A common approach is to use a hybrid frequency-time domain model based on the Cummins equation with hydro-dynamic inputs coming from linear wave theory (Ref. [1]). Published experimental data is sparse (Ref. [2]) and the suitability for the broad variety of WEC technologies has yet to be proven. This paper focuses on the challenges faced when attempting to validate a numerical model of a WEC using a variety of scaled physical tests in a waveflume. The technology used as a case study in this paper is a pitching WEC in close proximity to a fixed structure. Challenges are presented relating to waveflume effects and obtaining accurate physical input parameters to the numerical model.


Sign in / Sign up

Export Citation Format

Share Document