Low-Frequency Oscillations Within the Hambantota Port During the Southwest Monsoon, 2019

Author(s):  
Zhenjun Zheng ◽  
Xiaozhou Ma ◽  
Xuezhi Huang ◽  
Yujin Dong ◽  
Guohai Dong

Abstract Long waves with periods greater than tens of seconds propagating into a harbor may be trapped and significantly amplified, thereby resulting in detrimental effects on port operations. The water surface elevation in the Hambantota Port, Sri Lanka, was measured to investigate the low-frequency oscillations and their forcing mechanisms. Results show that the port is protected well from short waves with periods less than 30 s; however, the protection against long waves with periods larger than 30 s is inadequate. The spectral analyses identified four dominant periods within the low-frequency wave range. Modal analysis based on the extended mild-slope equation shows that the measured spectrum density for some dominant periods is low because the measurement point is close to the corresponding modal lines. Correlation analysis shows that low-frequency oscillations inside the Hambantota Port are excited directly by the low-frequency waves contained within the incident waves. The low-frequency waves outside the Hambantota Port are generated from the higher-frequency gravity waves (swell and wind waves) due to nonlinear interactions. Empirical formula is adopted to estimate the low-frequency wave height outside the Hambantota Port.

2012 ◽  
Vol 1 (33) ◽  
pp. 49
Author(s):  
Jose Alberto Gonzalez-Escriva ◽  
Josep Ramon MEDINA

A new maritime vertical structure was designed to improve the antireflective performance for wave reflection of wind waves and oscillations associated with intense storms, resonance waves in port basins, etc. Multiple unit chambers formed with long cell circuits (Medina et al., 2010) are responsible for the low frequency wave absorption that was studied through large-scale model testing.


Author(s):  
Junliang Gao ◽  
Chunyan Ji ◽  
Xiaojian Ma

In this paper, a fully nonlinear Boussinesq model is used to simulate the shoreward propagation of bichromatic wave groups over different fringing reef topographies and the subsequent low-frequency oscillations inside a harbor. Based on a low-frequency wave separation technique, the effects of the reef-face slope and the reef ridge on the bound and free long waves inside the harbor and their relative components under the condition of the lowest resonant mode are systematically investigated. For the given harbor, the given reef ridge and the range of the incident short wave amplitudes and the reef-face slopes studied in this paper, results show that the amplitude of the free long waves inside the harbor increases with the reefface slope, while the bound long waves inside the harbor is insensitive to the variation of the reef-face slope. The existence of the reef ridge can notably restrain the bound long waves inside the harbor when the incident short wave amplitudes are large, while it has little influence on the free long waves inside the harbor.


2016 ◽  
Vol 34 (7) ◽  
pp. 609-622 ◽  
Author(s):  
Ingo Richter ◽  
Hans-Ulrich Auster ◽  
Gerhard Berghofer ◽  
Chris Carr ◽  
Emanuele Cupido ◽  
...  

Abstract. The European Space Agency's spacecraft ROSETTA has reached its final destination, comet 67P/Churyumov-Gerasimenko. Whilst orbiting in the close vicinity of the nucleus the ROSETTA magnetometers detected a new type of low-frequency wave possibly generated by a cross-field current instability due to freshly ionized cometary water group particles. During separation, descent and landing of the lander PHILAE on comet 67P/Churyumov-Gerasimenko, we used the unique opportunity to perform combined measurements with the magnetometers onboard ROSETTA (RPCMAG) and its lander PHILAE (ROMAP). New details about the spatial distribution of wave properties along the connection line of the ROSETTA orbiter and the lander PHILAE are revealed. An estimation of the observed amplitude, phase and wavelength distribution will be presented as well as the measured dispersion relation, characterizing the new type of low-frequency waves. The propagation direction and polarization features will be discussed using the results of a minimum variance analysis. Thoughts about the size of the wave source will complete our study.


2020 ◽  
Vol 2 (1) ◽  
pp. 15
Author(s):  
Matteo Postacchini ◽  
Lorenzo Melito ◽  
Alex Sheremet ◽  
Joseph Calantoni ◽  
Giovanna Darvini ◽  
...  

We illustrate recent findings on the upriver propagation of long waves entering the mouth of the Misa River (Senigallia, Italy). Such a microtidal environment has been recently studied to understand river–sea interactions: it has been found that the river forcing dominates over the marine actions in winter, especially during storms. However, upriver wave propagation is not negligible with low-frequency waves propagating upriver for distances of the order of kilometers. With the aim to better understand the behavior of low-frequency waves propagating upriver, the analysis of the present work builds on field data collected by instruments installed close to the mouth and along the final reach of the Misa River: a tide gauge, two hydrometers and an acoustic Doppler sensor. It has been here observed that the tidal forcing (periods of the order of hours/days) is significantly strong at a distance of more than one kilometer from the river mouth, while shorter waves, like seiches (periods of some hours), are less important and are supposed to largely dissipate at the estuary, although their role could be of importance during relatively short events (e.g., floods).


Author(s):  
Martijn P. C. de Jong ◽  
Mart Borsboom ◽  
Jan A. M. de Bont ◽  
Bas van Vossen

The motions of (LNG) vessels moored offshore at depths ranging from about 20 to 100 m may depend significantly on the presence of (bound) low-frequency waves with periods in the order of 100 s. This is because these moored vessels show a large motion response in this frequency range and because the energy contents of low-frequency waves at these ‘intermediate’ depths is relatively large. As part of the Joint Industry Project HawaI, the operational Boussinesq-type wave model of Deltares, TRITON, was used to investigate whether this type of wave models could predict bound low-frequency waves (setdown waves) at intermediate depths. Comparison to measured and theoretical data, however, showed an underestimation of the computed levels of bound low-frequency wave heights for this depth range by a factor 2 to 4. Recently, additional tests were made with TRITON in situations for which the model has been designed: coastal engineering applications in shallow water (depths up to at most 20 m). These also showed an underestimation of the bound low-frequency wave heights, albeit smaller, up to a factor 2. In view of the importance of the energy contained in the low-frequency range for certain nearshore and shoreline processes, such as morphological processes, this underestimation is also of concern in coastal engineering. This triggered the development of a higher-order extension of the TRITON model equations (Borsboom, 2008, Wellens, 2010), with the aim to improve the accuracy of the model for long waves while still keeping computational times within acceptable (operational) limits. This paper reports on the usefulness of the extended model for the field of application considered in JIP HawaI/II: providing wave data for calculating the motions of vessels moored in intermediate depths. The results show a significant improvement of the modeling of nonlinear wave dynamics, including the prediction of bound low-frequency waves. This means that the model extension is an important step towards an operational Boussinesq-type wave model with sufficient accuracy in both the wave-frequency (sea, swell) and the low-frequency range for applications in intermediate depths.


1997 ◽  
Vol 58 (2) ◽  
pp. 345-366 ◽  
Author(s):  
QINGHUAN LUO ◽  
D. B. MELROSE

The effect of a beam of radio waves of very high brightness passing through a cold, magnetized, electron–positron plasma is discussed. The properties of the natural wave modes in such a plasma are summarized, and approximate forms for the nonlinear response tensor are written down. Photon-beam-induced instabilities of low-frequency waves in the pair plasma are analysed in the random-phase approximation. When three-wave interactions involve two high-frequency waves in the same mode and a low-frequency wave in a different mode, wave–wave interactions are similar to wave–particle interactions in that photons act like particles that emit and absorb low-frequency waves. The absorption coefficients for various low-frequency waves due to a photon beam are evaluated. In a pure electron–positron plasma, photon-beam-induced instabilities can be effective only when either the high-frequency or the low-frequency waves are strongly modified by the magnetic field. The growth of the low-frequency waves is most effective when the high-frequency photon beam has a frequency close to the cyclotron frequency.


2014 ◽  
Vol 119 (10) ◽  
pp. 6709-6724 ◽  
Author(s):  
Anne-Christine N. Péquignet ◽  
Janet M. Becker ◽  
Mark A. Merrifield

1995 ◽  
Vol 12 (1) ◽  
pp. 71-75
Author(s):  
Qinghuan Luo ◽  
D. B. Melrose

AbstractThree-wave interactions involving two high-frequency waves (in the same mode) and a low-frequency wave are discussed and applied to pulsar eclipses. When the magnetic field is taken into account, the low-frequency waves can be the ω-mode (the low-frequency branch of the ordinary mode) or the z-mode (the low-frequency branch of the extraordinary mode). It is shown that in the cold plasma approximation, effective growth of the low-frequency waves due to an anisotropic photon beam can occur only for z-mode waves near the resonance frequency. In the application to pulsar eclipses, the cold plasma approximation may not be adequate and we suggest that when thermal effects are included, three-wave interaction involving low-frequency cyclotron waves (e.g. Bernstein modes) is a plausible candidate for pulsar eclipses


2020 ◽  
Vol 208 ◽  
pp. 107408 ◽  
Author(s):  
Guohai Dong ◽  
Zhenjun Zheng ◽  
Xiaozhou Ma ◽  
Xuezhi Huang

2002 ◽  
Vol 68 (2) ◽  
pp. 137-148 ◽  
Author(s):  
A. N. KRYSHTAL

A specific type of plasma-wave instability in a hot magnetoactive collisional plasma due to a weak external electric field and weak spatial inhomogeneity is considered for the cases of kinetic Alfvén-like waves. These low-frequency waves with ω [Lt ] Ωi (where Ωi is the ion gyrofrequency) are solutions of the corresponding dispersion relation. The model integral of Bhatnagar, Gross, and Krook is used for the description of collisions. The quasistatic time variation of the electric field amplitude makes it possible to use the ‘direct initiation’ mechanism to describe instability development. An expression for the growth rate is obtained in the framework of linear theory. The instability in question occurs for a certain equation of state of the plasma. For this equation of state, a numerical analysis of the obtained instabilities is performed.


Sign in / Sign up

Export Citation Format

Share Document