Numerical Analysis of Wave Impact Loads on Semi-Submersible Platform

Author(s):  
Kangping Liao ◽  
Wenyang Duan ◽  
QingWei Ma ◽  
Shan Ma ◽  
Binbin Zhao ◽  
...  

In rough sea conditions, semi-submersible platform often suffers from extreme wave impact loads, which can result in structural damage. It is important to predict the wave impact loads on semi-submersible platform. Therefore, the purpose of this study is to investigate the wave impact loads on semi-submersible platform with numerical methods. A numerical method, based on a fixed regular Cartesian grid system, has been developed by the authors. In the method, the FDM (Finite Difference Method) is applied for solving flow field, and the THINC/SW (Tangent of Hyperbola for INterface Capturing with Slope Weighting) model, which is kind of VOF (Volume-of-Fluid) model, is adopted to capture the free surface. Some selected model test cases, form Exwave JIP project, will be used to validate the present numerical method and to analyze the wave impact loads on semi-submersible platform.

Author(s):  
Kangping Liao ◽  
Wenyang Duan ◽  
QingWei Ma ◽  
Binbin Zhao ◽  
Shan Ma ◽  
...  

In rough sea conditions, Semi-submersible platform often suffers from extreme wave impact loads, which can result in structural damage. It is important to predict the wave impact loads on Semi-submersible platform. A CFD method, based on a fixed regular Cartesian grid system, has been developed by the authors for wave impact loads on semi-submersible platform (Liao et al., 2017). However, time consuming is still the bottleneck of CFD method for industry application. In this study, a coupled potential-viscous flow method is developed for improving computational efficiency. In the present method, our CFD in-house code is coupled with MrNWB dynamic libraries using the Euler Overlay Method (EOM) (Baquet et al., 2017). Comparison of the computational accuracy and efficiency between our original CFD in-house code and the present coupled method will be discussed in detail, and benchmark model test will also be used to validate the present coupled method in wave impact simulation.


Author(s):  
Xin Lu ◽  
Pankaj Kumar ◽  
Anand Bahuguni ◽  
Yanling Wu

The design of offshore structures for extreme/abnormal waves assumes that there is sufficient air gap such that waves will not hit the platform deck. Due to inaccuracies in the predictions of extreme wave crests in addition to settlement or sea-level increases, the required air gap between the crest of the extreme wave and the deck is often inadequate in existing platforms and therefore wave-in-deck loads need to be considered when assessing the integrity of such platforms. The problem of wave-in-deck loading involves very complex physics and demands intensive study. In the Computational Fluid Mechanics (CFD) approach, two critical issues must be addressed, namely the efficient, realistic numerical wave maker and the accurate free surface capturing methodology. Most reported CFD research on wave-in-deck loads consider regular waves only, for instance the Stokes fifth-order waves. They are, however, recognized by designers as approximate approaches since “real world” sea states consist of random irregular waves. In our work, we report a recently developed focused extreme wave maker based on the NewWave theory. This model can better approximate the “real world” conditions, and is more efficient than conventional random wave makers. It is able to efficiently generate targeted waves at a prescribed time and location. The work is implemented and integrated with OpenFOAM, an open source platform that receives more and more attention in a wide range of industrial applications. We will describe the developed numerical method of predicting highly non-linear wave-in-deck loads in the time domain. The model’s capability is firstly demonstrated against 3D model testing experiments on a fixed block with various deck orientations under random waves. A detailed loading analysis is conducted and compared with available numerical and measurement data. It is then applied to an extreme wave loading test on a selected bridge with multiple under-deck girders. The waves are focused extreme irregular waves derived from NewWave theory and JONSWAP spectra.


Author(s):  
Andrew Cornett

Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.


2008 ◽  
Vol 14 (2) ◽  
pp. 72-87 ◽  
Author(s):  
Koustuv Debnath ◽  
Amartya Kumar Bhattacharya ◽  
Biswanath Mahato ◽  
Agnimitro Chakrabarti

2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.


Author(s):  
D. Jaya Krishna

Abstract In the present study, the numerical investigation has been performed for a phase change material (PCM)-based longitudinal fin heat sink. The fins are taken as an integral part of the heat sink and are made up of aluminum. The PCM considered in the study is RT44HC. Heat is transferred to the heat sink through its horizontal base. In order to simulate the melting behavior of the PCM, volume of fluid model has been used. To attain the best configuration with optimum operational time, Taguchi method has been used followed by analysis of melt fraction and maximum base temperature. The optimized heat sink configuration with maximum operational time has been obtained at the critical temperatures of 54.8 °C, 63 °C, and 72.6 °C.


Author(s):  
Anne M. Fullerton ◽  
Thomas C. Fu ◽  
Edward S. Ammeen

Impact loads from waves on vessels and coastal structures are highly complex and may involve wave breaking, making these changes difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and non-breaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident non-breaking and breaking waves on one face of a cube. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. A limited number of runs were made at low forward speeds, ranging from about 0.5 to 2 knots (0.26 to 1.03 m/s). The measurement cube was outfitted with a removable instrumented plate measuring 1 ft2 (0.09 m2), and the wave heights tested ranged from 8–14 inches (20.3 to 35.6 cm). The instrumented plate had 9 slam panels of varying sizes made from polyvinyl chloride (PVC) and 11 pressure gages; this data was collected at 5 kHz to capture the dynamic response of the gages and panels and fully resolve the shapes of the impacts. A Kistler gage was used to measure the total force averaged over the cube face. A bottom mounted acoustic Doppler current profiler (ADCP) was used to obtain measurements of velocity through the water column to provide incoming velocity boundary conditions. A Light Detecting and Ranging (LiDAR) system was also used above the basin to obtain a surface mapping of the free surface over a distance of approximately 15 feet (4.6 m). Additional point measurements of the free surface were made using acoustic distance sensors. Standard and high-speed video cameras were used to capture a qualitative assessment of the impacts. Impact loads on the plate tend to increase with wave height, as well as with plate inclination toward incoming waves. Further trends of the pressures and forces with wave characteristics, cube orientation, draft and face angle are investigated and presented in this paper, and are also compared with previous test results.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2849
Author(s):  
Shudi Dong ◽  
Md Salauddin ◽  
Soroush Abolfathi ◽  
Jonathan Pearson

This study investigates the variation of wave impact loads with the geometrical configurations of recurve retrofits mounted on the crest of a vertical seawall. Physical model tests were undertaken in a wave flume at the University of Warwick to investigate the effects of the geometrical properties of recurve on the pressure distribution, overall force, and overturning moment at the seawall, subject to both impulsive and non-impulsive waves. Additionally, the wave impact and quasi-static loads on the recurve portion of the retrofitted seawalls are investigated to understand the role of retrofitting on the structural integrity of the vertical seawall. Detailed analysis of laboratory measurements is conducted to understand the effects of overhang length and height of the recurve wall on the wave loading. It is found that the increase in both recurve height and overhang length lead to the increase of horizontal impact force at an average ratio of 1.15 and 1.1 times larger the reference case of a plain vertical wall for the tested configurations. The results also show that the geometrical shape changes in recurve retrofits, increasing the overturning moment enacted by the wave impact force. A relatively significant increase in wave loading (both impact and quasi-static loads) are observed for the higher recurve retrofits, while changes in the overturning moment are limited for the retrofits with longer overhang length. The data generated from the physical modelling measurements presented in this study will be particularly helpful for a range of relevant stakeholders, including coastal engineers, infrastructure designers, and the local authorities in coastal regions. The results of this study can also enable scientists to design and develop robust decision support tools to evaluate the performance of vertical seawalls with recurve retrofitting.


Sign in / Sign up

Export Citation Format

Share Document