Maneuverability Towing Tank Experiments With Manifold Models: Part I — Static Tests

Author(s):  
Felipe Augusto de Souza Kleine ◽  
Danyllo de Lima Guedes ◽  
Felipe Santos de Castro ◽  
Daniel Carvalho ◽  
João Lucas Dozzi Dantas

This work is the Part I of a two-part work, where the maneuverability of three manifold geometries was investigated by Towing Tank tests at the Institute for Technological Research, in order to verify the influence of geometrical simplifications and modifications. In this work is presented a comparison between the forces and moments measured in static drift tests, considering a pitch orientation ranging from 0 to 360 degrees, and the static hydrodynamic derivatives in a reference orientation. In the Part II, the investigations were complemented by the results of dynamic tests. The manifold models were constructed in a 1:13 scale. The first model was a geometrically simplified version of the prototype, composed of two simple blocks; the second one was constructed with almost all the prototype geometric details; the last one used the second model with a plate installed on its top. The tests results indicate that the geometrical simplification of manifold models did not have a significant influence on the maneuvering coefficients, in contrast to the addition of the top plate, which significantly changed the maneuvering capabilities of the model. The study presented in both papers will be used to form a data base for numerical simulation studies for manifolds installation.

Author(s):  
Danyllo de Lima Guedes ◽  
Felipe Augusto de Souza Kleine ◽  
Felipe Santos de Castro ◽  
Daniel Carvalho ◽  
João Lucas Dozzi Dantas

This work is the Part II of a two-part work, where the influence of geometrical simplifications and modifications in the maneuverability of a manifold were investigated by three 1:13 scaled models in a towing tank. In this work is presented the adopted methods that were used to obtain the hydrodynamic derivatives from forced oscillations motions in a towing tank using a planar-motion-mechanism. In the part I was presented the static drift tests, which were used to complement the tests presented in this paper. The maneuvering hydrodynamic derivatives are obtained by a two part analysis. First, the measured forces, moments and motions time series signals are filtered and decomposed in harmonic functions. Second, regression analysis techniques are applied to the amplitude of these harmonic functions in order to estimate the hydrodynamic derivatives. The results have showed that the simplification of the manifold geometry has a low influence in the hydrodynamic derivatives in contrast to the installation of a larger plate, which modified the manifold maneuverability significantly. The presented investigation in both papers will be used to form a data base for numerical simulation studies for manifolds installation.


Optik ◽  
2021 ◽  
Vol 231 ◽  
pp. 166417 ◽  
Author(s):  
Md Tohidul Islam ◽  
Md Rafsun Jani ◽  
Kazi Md Shorowordi ◽  
Zameer Hoque ◽  
Ali Mucteba Gokcek ◽  
...  

2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


Author(s):  
Huishe Wang ◽  
Qingjun Zhao ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

A detailed unsteady numerical simulation has been carried out to investigate the shock systems in the high pressure (HP) turbine rotor and unsteady shock-wake interaction between coupled blade rows in a 1+1/2 counter-rotating turbine (VCRT). For the VCRT HP rotor, due to the convergent-divergent nozzle design, along almost all the span, fishtail shock systems appear after the trailing edge, where the pitch averaged relative Mach number is exceeding the value of 1.4 and up to 1.5 approximately (except the both endwalls). A group of pressure waves create from the suction surface after about 60% axial chord in the VCRT HP rotor, and those waves interact with the inner-extending shock (IES). IES first impinges on the next HP rotor suction surface and its echo wave is strong enough and cannot be neglected, then the echo wave interacts with the HP rotor wake. Strongly influenced by the HP rotor wake and LP rotor, the HP rotor outer-extending shock (OES) varies periodically when moving from one LP rotor leading edge to the next. In VCRT, the relative Mach numbers in front of IES and OES are not equal, and in front of IES, the maximum relative Mach number is more than 2.0, but in front of OES, the maximum relative Mach number is less than 1.9. Moreover, behind IES and OES, the flow is supersonic. Though the shocks are intensified in VCRT, the loss resulted in by the shocks is acceptable, and the HP rotor using convergent-divergent nozzle design can obtain major benefits.


Author(s):  
Raffaele Ciardiello ◽  
Andrea Tridello ◽  
Luca Goglio ◽  
Giovanni Belingardi

In the last decades, the use of adhesives has rapidly increased in many industrial fields. Adhesive joints are often preferred to traditional fasteners due to the many advantages that they offer. For instance, adhesive joints show a better stress distribution compared to the traditional fasteners and high mechanical properties under different loading conditions. Furthermore, they are usually preferred for joining components made of different materials. A wide variety of adhesives is currently available: thermoset adhesives are generally employed for structural joints but recently there has been a significant increment in the use of thermoplastic adhesives, in particular of the hot-melt adhesives (HMAs). HMAs permit to bond a large number of materials, including metal and plastics (e.g., polypropylene, PP), which can be hardly bonded with traditional adhesives. Furthermore, HMAs are characterized by a short open time and, therefore, permit for a quick and easy assembly process since they can be easily spread on the adherend surfaces by means of a hot-melt gun and they offer the opportunity of an ease disassembling process for repair and recycle. For all these reasons, HMAs are employed in many industrial applications and are currently used also for bonding polypropylene and polyolefin piping systems. In the present paper, the dynamic response of single lap joints (SLJ) obtained by bonding together with a polyolefin HMA two polypropylene substrates was experimentally assessed. Quasi-static tests and dynamic tests were carried out to investigate the strain rate effect: dynamic tests were carried out with a modified instrumented impact pendulum. Relevant changes in the joint performance have been put in evidence. Failure modes were finally analysed and compared. A change in the failure mode is experimentally found: in quasi-static tests SLJ failed due to a cohesive failure of the adhesive, whereas in dynamic tests the SLJ failed due to an interfacial failure, with a low energy absorption.


2013 ◽  
Vol 690-693 ◽  
pp. 211-217
Author(s):  
Jin Gui Qin ◽  
Fang Yun Lu ◽  
Yu Liang Lin ◽  
Xue Jun Wen

Results of uni-axial tensile loading of three automotive steels at different strain rates (0.0011–3200s-1) are reported here. Quasi-static tensile tests were performed under the strain rate of 1.1×10-3 s-1 using an electromechanical universal testing machine, whereas dynamic tests were carried out under the strain rate in the range of 1100 to 3200 s-1 using a Split Hopkinson Tensile Bar apparatus. Based on the experimental results, the material parameters of widely used Johnson–Cook model which described the strain rate and temperature-dependent of mechanical behaviour were determined. The experiments show that strain-rate hardening is superior to thermal softening: yield stresses, tensile strength, deformation, and energy dissipation increase with the strain rate from quasi-static tests to dynamic tests. The Johnson–Cook model can describe the behaviour of these steels and provides the opportunity to study the material and structural response.


Sign in / Sign up

Export Citation Format

Share Document