Mechanical Behaviors of Steel Strip Reinforced Flexible Pipes Under Bending

Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Ting Liu ◽  
Peihua Han ◽  
Yong Bai

Steel strip reinforced flexible pipe (SSRFP) is a kind of unbonded composite pipe, which has more application foreground in offshore engineering due to its excellent mechanics and the considerable flexibility. In practical application, SSRFP will inevitably experience bending during reeling process and installation. In this paper, the mechanical behavior of SSRFP subjected to pure bending are studied both experimentally and numerically. A four-point bending equipment is utilized to conduct the full-scale laboratorial tests of SSRFP. Furthermore, the commercial software ABAQUS is employed to simulate its ovalization instability. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good coincidence with each other. The proposed model and the relative results may be of interest to the manufacture factory engineers.

Author(s):  
Yifan Gao ◽  
Shan Jin ◽  
Peng Cheng ◽  
Peihua Han ◽  
Yong Bai

Abstract Fiberglass reinforced flexible pipe (FRFP) is a kind of composite thermoplastic pipe, which has many advantages compared to boned flexible pipes. This paper describes an analysis of the mechanical behavior of FRFP under bending. The bending behavior of FRFP was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP in a typical four-point bending test. Curvature-bending moment relations were recorded during the test. Then, based on the nonlinear ring theory and the principle of virtual work, a simplified method was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and high density polyethylene (HDPE) layers was established to simulate the HDPE layers and reinforced layers, respectively. The result of Curvature-bending moment relations obtained from three methods agree well with each other, which proves that the simplified analytical model and FEM are accurate and reliable. The conclusions of this paper could be useful to manufacturing engineers.


2013 ◽  
Vol 652-654 ◽  
pp. 1514-1519
Author(s):  
Zhi Bo Li ◽  
Hui Xu ◽  
Gui Zhen Zhang

Due to the complex structure and nonuniform material of unbonded flexible pipes, an elastic thin-walled cylinder model and a helical steel strip model were established respectively to simulate different layers based on the specific structure form and parameters. Quasi-static incremental load was adopted to identify the structural parameters which had significant effects on the axial, radial and bending behavior of the pipes during the complex deformation. Sensitivity of these parameters were also analysed. The conclusion in this paper could provide guaidance for the design of unbonded flexible pipe.


Author(s):  
Gabriel Mattos Gonzalez ◽  
José Renato Mendes de Sousa

Abstract Periodic shutdowns, which decompress service pressure down to atmospheric pressure, are common in offshore flexible pipe systems. In high pressure and high temperature operations, the use of multi-layer barrier flexible pipes is also common. A multi-layer barrier usually combines inner sacrificial and pressure sheaths and, under certain circumstances, the annular gap between these sheaths is filled with fluid. When this fluid is trapped in this gap, which may occur due to a rapid decompression on shutdown operations or an accidental opening of an upstream valve, the flexible pipe system may fail. The trapped fluid tends to be released slower than the fluid that transiently flows under the bore thus generating a differential pressure, which is function of the rate of decompression, and may induce the collapse of the inner carcass. Therefore, the assessment of the magnitude of this differential pressure is crucial to prevent safe decompression rates. This article describes a numerical model, based on finite differences, to predict the differential pressure magnitude for risers in catenary configurations. The model is developed considering fundamental fluid dynamics principles, such as the conservation equations, for a one-dimensional geometry. The results are compared to previously published literature data for a given 4” flexible pipes under two different geometric configurations (horizontal and catenary). The results from the proposed model agreed quite well with those from a previous proposed approach for horizontal configurations, while the catenary configuration analyses evidenced the impact of the gravity parcel on the differential pressure between the pressure sheath and the bore of the pipe.


Author(s):  
Qiang Q. Shao ◽  
Peng Cheng ◽  
Wen S. Liu ◽  
Wen X. Cai ◽  
Zhi P. Han ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 155892502199081
Author(s):  
Guo-min Xu ◽  
Chang-geng Shuai

Fiber-reinforced flexible pipes are widely used to transport the fluid at locations requiring flexible connection in pipeline systems. It is important to predict the burst pressure to guarantee the reliability of the flexible pipes. Based on the composite shell theory and the transfer-matrix method, the burst pressure of flexible pipes with arbitrary generatrix under internal pressure is investigated. Firstly, a novel method is proposed to simplify the theoretical derivation of the transfer matrix by solving symbolic linear equations. The method is accurate and much faster than the manual derivation of the transfer matrix. The anisotropy dependency on the circumferential radius of the pipe is considered in the theoretical approach, along with the nonlinear stretch of the unidirectional fabric in the reinforced layer. Secondly, the burst pressure is predicted with the Tsai-Hill failure criterion and verified by burst tests of six different prototypes of the flexible pipe. It is found that the burst pressure is increased significantly with an optimal winding angle of the unidirectional fabric. The optimal result is determined by the geometric parameters of the pipe. The investigation method and results presented in this paper will guide the design and optimization of novel fiber-reinforced flexible pipes.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


2021 ◽  
Author(s):  
Thierry Dequin ◽  
Clark Weldon ◽  
Matthew Hense

Abstract Flexible risers are regularly used to produce oil and gas in subsea production systems and by nature interconnect the subsea production system to the floating or fixed host facilities. Unbonded flexible pipes are made of a combination of metallic and non-metallic layers, each layer being individually terminated at each extremity by complex end fittings. Mostly submerged in seawater, the metallic parts require careful material selection and cathodic protection (CP) to survive the expected service life. Design engineers must determine whether the flexible pipe risers should be electrically connected to the host in order to receive cathodic protection current or be electrically isolated. If the host structure is equipped with a sacrificial anode system, then electrical continuity between the riser and the host structure is generally preferred. The exception is often when the riser and host structure are operated by separate organizations, in which case electrical isolation may be preferred simply to provide delineation of ownership between the two CP systems. The paper discusses these interface issues between hull and subsea where the hull is equipped with an impressed current cathodic protection (ICCP) system, and provides guidance for addressing them during flexible pipe CP design, operation, and monitoring. Specifically, CP design philosophies for flexible risers will be addressed with respect to manufacturing, installation and interface with the host structure’s Impressed Current Cathodic Protection (ICCP) system. The discussion will emphasize the importance of early coordination between the host structure ICCP system designers and the subsea SACP system designers, and will include recommendations for CP system computer modeling, CP system design operation and CP system monitoring. One of the challenges is to understand what to consider for the exposed surfaces in the flexible pipes and its multiple layers, and also the evaluation of the linear resistance of each riser segment. The linear resistance of the riser is a major determinant with respect to potential attenuation, which in turn largely determines the extent of current drain between the subsea sacrificial anode system and the hull ICCP system. To model the flexible riser CP system behavior for self-protection, linear resistance may be maximized, however the use of a realistic linear resistance is recommended for evaluation of the interaction between the host structure and subsea system. Realistic flexible linear resistance would also reduce conservatism in the CP design, potentially save time during the offshore campaign by reducing anode quantities, and also providing correct evaluation of drain current and stray currents.


2018 ◽  
Vol 33 (6) ◽  
pp. 727-753
Author(s):  
Wei Chen ◽  
Haichao Xiong ◽  
Yong Bai

The mechanical behaviors of steel strip–reinforced flexible pipe (steel strip PSP) under combined axial extension → internal pressure ( T→ P) load path were investigated. Typical failure characteristics of pipe samples under pure internal pressure and T→ P load path were identified in the full-scale experiments. A theoretical model for pipe under tension load was proposed to capture the relationship between axial extension of the pipe body and stress state of the steel strip. Numerical study based on finite element (FE) method was conducted to simulate the experiment process, and good agreement between FE data and experiment results were observed. Sensitivity study was conducted to study the effect of some key parameters on the pipe antiburst capacities in T→P load path; the effect of preloaded internal pressure on the pipe tensile capacity in P→T load path was also studied. Useful conclusions were drawn for the design and application of the steel strip PSP.


Author(s):  
Victor Chaves ◽  
Luis V. S. Sagrilo ◽  
Vinícius Ribeiro Machado da Silva

Irregular wave dynamic analysis is an extremely computational expensive process on flexible pipes design. One emerging method that aims to reduce these computational costs is the hybrid methodology that combines Finite Element Analyses (FEA) and Artificial Neural Network (ANN). The proposed hybrid methodology aims to predict flexible pipe tension and curvatures in the bend stiffener region. Firstly using short FEA simulations to train the ANN, and then using only the ANN and the prescribed floater motions to get the rest of the response histories. Two approaches are developed with respect to the training data. One uses an ANN for each sea state in the wave scatter diagram and the other develops an ANN for each wave incidence direction. In order to evaluate the accuracy of the proposed approaches, a local analysis is applied, based on the predicted tension and curvatures, to calculate stresses in tension armour wires and the corresponding flexible pipe fatigue lifes. The results are compared to those from full nonlinear FEM simulation.


Author(s):  
Pan Fang ◽  
Yuxin Xu ◽  
Shuai Yuan ◽  
Yong Bai ◽  
Peng Cheng

Fibreglass reinforced flexible pipe (FRFP) is regarded as a great alternative to many bonded flexible pipes in the field of oil or gas transportation in shallow water. This paper describes an analysis of the mechanical behavior of FRFP under torsion. The mechanical behavior of FRFP subjected to pure torsion was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP subjected to torsional load. Torque-torsion angle relations were recorded during this test. Then, a theoretical model based on three-dimensional (3D) anisotropic elasticity theory was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and PE layers was used to simulate the torsional load condition in ABAQUS. Torque-torsion angle relations obtained from these three methods agree well with each other, which illustrates the accuracy and reliability of the analytical model and FEM. The impact of fibreglass winding angle, thickness of reinforced layers and radius-thickness ratio were also studied. Conclusions obtained from this research may be of great practicality to manufacturing engineers.


Sign in / Sign up

Export Citation Format

Share Document