Research on Hydrostatic Stability Calculation Method for Mobile Offshore Units

Author(s):  
Yong Ding ◽  
Shunli Cao ◽  
Linxin Lan ◽  
Mo Chen ◽  
Liming Pan

Since most offshore platforms have comparable length and breadth, the transverse stability is not sufficient to estimate safety of floating platform. The current solution is to follow conventional transverse stability methodology to any orientation, then take the weakest one as a key consideration. However, the analysis ignores trim in all process of heeling. Longitudinal balance at each heel angle reduce the righting arm of platform, which is more reasonable. In this study, the Euler angles are used as floating parameters of platform, and three kinds of longitudinal balance cases are divided. The oblique free trim method and the free twist method, two of the three cases mentioned, are chosen to establish floating equations of platform. The potential energy surface and the longitudinal coefficient of stiffness are applied to the analysis from standpoints of energy balance and moment balance separately, the former is used to get the most critical axis for a given heel angle, and the latter can be used as the stability criterion of floating condition. Following this idea, a numerical tool has been developed. This paper describes the method used to estimate the stability of offshore platform, and validation work is presented for simple geometries. Then, results from two operational stability studies are discussed. Finally, possible further work is discussed.

Author(s):  
Neil Luxcey ◽  
Øystein Johannessen ◽  
Sébastien Fouques

When designing a new floating unit concept, static stability computations are performed in order to check stability criteria defined in regulations. Calculations for design conditions generally include the estimation of buoyancy force, gravity force and wind force acting on the floater for a given condition and a desired axis of rotation. However, when studying the stability of a floating platform in operational conditions, all external forces acting on the unit should be comprised in the assessment in order to get a more realistic — and even physically admissible — picture of the platform stability. Those forces include among others wind, current and anchor line system forces. In addition, limiting the study to one axis of rotation may not provide a complete picture of the floater stability, especially when the hull is of a semi-submersible type. Following this physical approach, a numerical tool has been developed based on the SINTEF Ocean’s SIMA software package. The latter package initially includes a time domain simulator of complex multibody systems for marine operations. The developed tool provides accurate physical models for each force component that may have effects on the stability. It opens the possibility to study the operational stability of a floater without restraining the study to one axis of rotation. It also allows the analysis of damaged conditions with large inclination angles. This paper describes the model implemented in this numerical tool. Validation work is presented for simple geometries. Results from an operational stability study of a semi-submersible are discussed. Finally, possible further work is discussed.


2020 ◽  
Vol 180 ◽  
pp. 02004
Author(s):  
Mihail-Vlad Vasilescu ◽  
Dumitru Dinu

This article presents the influence on the stability of a container ship, by connecting a Flettner balloon, as wind energy capturing system. Flettner balloon is a generator of electric power, filled with helium that rotates around a horizontal axis and sends the electricity using a cable. It rotates around a horizontal axis in response to the wind, effectively generating clean, renewable electricity at a lower cost than all competing systems. These article major points determined by the authors are: calculation of the forces which influence the balloon, calculation the influence of the balloon on the ship transverse and longitudinal stability, calculation of the ship new displacement, new draft, new GM and period of rolling. As a conclusion of the article, the reader will discover that the transverse stability of the ship will insignificant decreased with a small value of 0.01 and the longitudinal stability will be improved by 0.7532. The article demonstrates that a Flettner balloon, installed on a container ship, is a possible concept of capturing wind energy.


2011 ◽  
Vol 8 (4) ◽  
pp. 1911-1915
Author(s):  
N. G. Nadkarni ◽  
K. V. Mangaonkar

Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II), Ni(II), Cu(II) and Zn(II); X = 5-bromosalicylidene-4-methoxyaniline and Y = salicylidene-2,3-dimethylaniline] have been examined pH-metrically at 27±0.5°C and at constant ionic strength, μ = 0.1 M (KCl) in 75 : 25(v/v) 1,4-dioxne-water medium. The stability constants for binary (M-Y) and ternary (M-X-Y) systems were calculated.


2011 ◽  
Vol 189-193 ◽  
pp. 2366-2370
Author(s):  
Jun Hong Li

For the loess cave characteristics, such as the thin coverage soil layer at the hole top, the poor self-stabilizing capacity, the large disturbance deformation after excavation and the easy collapse, thus in this paper, the loess cave safety factor is obtained by the method of strength reduction. And the stability calculation analysis is much more perfect. The Northwest Area Lishi loess cave is used in this paper, and the idea of strength reduction finite element method is applied, based on the Drucker-Prager yield criterion, the loess cave static stability analysis is made by the software of ANSYS.The results show that the actual situation can be reflected by the method of finite element strength subtraction. And the obtained loess cave stability coefficient is much closer to the actual steady state, thus showing the certain advantages of stability analysis.The method is also adopted in this paper. And its feasibility can be applied to the engineering practice, also a theoretical basis of reference is provided for engineering application.


2018 ◽  
Vol 52 (3) ◽  
pp. 893-944 ◽  
Author(s):  
Raphaèle Herbin ◽  
Jean-Claude Latché ◽  
Trung Tan Nguyen

In this paper, we build and analyze the stability and consistency of decoupled schemes, involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These schemes are based on staggered space discretizations, with an upwinding performed with respect to the material velocity only. The pressure gradient is defined as the transpose of the natural velocity divergence, and is thus centered. The velocity convection term is built in such a way that the solutions satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to be non-negative under a CFL condition. In the case of the full Euler equations, we solve the internal energy balance, to avoid the space discretization of the total energy, whose expression involves cell-centered and face-centered variables. However, since the residual terms in the kinetic energy balance (probably) do not tend to zero with the time and space steps when computing shock solutions, we compensate them by corrective terms in the internal energy equation, to make the scheme consistent with the conservative form of the continuous problem. We then show, in one space dimension, that, if the scheme converges, the limit is indeed an entropy weak solution of the system. In any case, the discretization preserves by construction the convex of admissible states (positivity of the density and, for Euler equations, of the internal energy), under a CFL condition. Finally, we present numerical results which confort this theory.


2017 ◽  
Vol 74 (19) ◽  
pp. 1579-1583 ◽  
Author(s):  
Abdel Naser Zaid ◽  
Rania Shtayah ◽  
Ayman Qadumi ◽  
Mashour Ghanem ◽  
Rawan Qedan ◽  
...  

Abstract Purpose The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated. Methods Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted. Results The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle. Conclusion Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.


Author(s):  
LUSI NURDIANTI ◽  
IYAN SOPYAN ◽  
TAOFIK RUSDIANA

Objective: The present study was conducted to formulate and characterize the thin film containing astaxanthin nanoemulsion (TF-ASN) using Hydroxypropylmethyl Cellulose (HPMC) polymer as a film matrix system. The stability studies in different storage conditions were also performed. Methods: Astaxanthin nanoemulsion (As-NE) was prepared by using self-nanoemulsifying method, followed by incorporation into the HPMC matrix system by solvent casting method to forming TF-ASN. Evaluation of TF-ASN was performed by physical and mechanical characterizations. Stability study was carried out in both of accelerated (temperature of 40±2 °C/75±5% RH) and non-accelerated (at ambient temperature) conditions. Assay of astaxanthin in individual TF-ASN was determined compared to pure astaxanthin. Results: TF-ASN had good physical and mechanical characteristics that suitable for intraoral administration. Conclusion: For the study of stability under different storage conditions, it was proven that nanoemulsion form was packed in a HPMC matrix could enhance the stability of the astaxanthin.


2021 ◽  
Author(s):  
Mehboobali Pannipara ◽  
Abdullah G Al-Sehemi

Abstract Carboxylic acid supramolecular synthon exhibited dimer or catemer motifs in the crystal lattice depend on the substituent and other functional groups present in the structure. In general, presence of other competing functional groups produced catemer motifs whereas unsubstituted acids showed dimer. In this manuscript, we have synthesized a new aryl ether amine-based Schiff base with carboxylic acid functionality ( 1 ) and demonstrated polymorphic structure via catemer ( 1a ) and dimer ( 1b ) motifs in the solid state. In both the structure, carboxylic acid group adopted different orientation in the crystal lattice. The different H-bonding lead to modulation of optical properties that was further supported highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) calculation. Further the stability calculation indicates that catemer structure was more stable by 8.54 kcal/mole relative to dimer motifs. In contrast, naphthyl group attached carboxylic acid structure did not show neither dimer nor catemer motifs in the crystal lattice as compared to diethylaminophenyl group, which confirm the presence of other substituent or competing functional groups strongly influence on the motifs of supramolecular interactions.


2003 ◽  
Vol 28 ◽  
Author(s):  
Kaustubh Mani Nepal ◽  
Roger Olsson

A 120 m long and 68 m high rock cut slope is designed at the right side of spillway of Middle Marsyangdi Hydroelectric Project. This paper describes the stability studies performed for the rock cut slopes in jointed quartzite for foundation of spillway.


Sign in / Sign up

Export Citation Format

Share Document