Experimental and Numerical Characterization of the Stress-Strain Behavior of Weak Sandstone Formations for Sanding Assessment

Author(s):  
Nubia Aurora González Molano ◽  
Jacobo Canal Vila ◽  
Héctor González Pérez ◽  
José Alvarellos Iglesias ◽  
M. R. Lakshmikantha

In this study an extensive experimental program has been carried out in order to characterize the mechanical behavior of two weak sandstone formations of an offshore field for application to sand production modeling. The experimental tests included Scratch tests, Triaxial tests and Advanced thick wall cylinder tests (ATWC) where the sand production initiation and the cumulative sand produced were registered. Numerical simulations of experimental tests were then performed using an advanced elasto-plastic constitutive model. Triaxial tests simulations allowed calibrating the constitutive model parameters. These parameters were employed for the numerical simulation of the ATWC in order to determine the equivalent plastic strain threshold required to the onset of sand production observed in laboratory for sanding assessment. Results obtained highlight the importance to use a realistic representation of the rock behavior focusing on post-yield behavior in order to build confidence in model predictions.

2011 ◽  
Vol 194-196 ◽  
pp. 848-852
Author(s):  
Duo Xin Zhang ◽  
Qing Yun Wang

This study centered on the development of constitutive model of the material based on damage mechanics. Volumetric expansion, unilateral behavior and softening effect have been pointed out as three difficulties during setting constitutive model of concrete, the applicable and deficiency of the existed constitutive relationship been reviewed, and the methods used to deal above difficulties were overviewed, Meanwhile, the background of existed model has been summarized and listed systematically. The development of a thermodynamic approach to constitutive model of concrete, with emphasis on the rigorous and consistency both in the formulation of constitutive models and in the identification of model parameters based on experimental tests has been potential direction of the future study, and hoped furnished basement for the elastic to plastic coupled damage mechanics constitutive model of concrete.


Author(s):  
A. S. Zaki ◽  
H. Ghonem

Abstract This paper describes the cyclic accumulative plastic strain in a polycrystalline material when subjected to loading conditions promoting ratcheting behavior. For this purpose, a unified viscoplastic constitutive model based on non-linear kinematic hardening formulation is implemented. Identification of the model parameters was carried out using an experimental program that included monotonic, cyclic and relaxation testing. Simulation of the material response using the proposed model is compared with experimental results for the same loading. This comparison is used to evaluate the model validity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pengfei Zhang ◽  
Han Liu ◽  
Zhentu Feng ◽  
Chaofeng Jia ◽  
Rui Zhou

Based on large-scale triaxial tests of sandy gravel materials, the strength and deformation characteristics under loading/unloading conditions are analyzed. At the same time, the applicability of the hyperbolic constitutive model to sandy gravel is studied using experimental data. The results indicate that sandy gravel under low confining pressures (0.2 and 0.4 MPa) shows a weak softening trend; the higher the confining pressure, the more obvious the hardening tendency (0.6 and 0.8 MPa) and the greater the peak strength. During unloading tests, strain softening occurs, and the peak strength increases with increasing confining pressure. During loading tests, dilatancy appears when the confining pressure is low (0.2 MPa). With increasing confining pressure (0.4, 0.6, and 0.8 MPa), the dilatancy trend gradually weakens, and the cumulative volume tric strain increases, which reflects the relevance of the stress paths. Through research, it is found that the hyperbolic constitutive model has good applicability to sandy gravel soils, and the corresponding model parameters are obtained.


2021 ◽  
Author(s):  
Surej Kumar Subbiah ◽  
Ariffin Samsuri ◽  
Assef Mohamad-Hussein ◽  
Mohd Zaidi Jaafar ◽  
Yingru Chen ◽  
...  

Abstract Sandstone reservoir failure during hydrocarbon production can cause negative impact on the oil/gas field development economics. Loss of integrity and hydrocarbon leakage due to downhole or surface erosion can decrease the risk of operational safety. Therefore, a proper understanding of the best formulation to manage and find the balance between productivity and sand risk is very important. Making decisions for the best and most economical completion design needs a full and proper sanding risk analysis driven by geomechanics modeling. The accuracy of modeling the reservoir rock mechanical behavior and the failure analysis depends on the selection of the constitutive model (failure criteria) specially to understand the failure and post failure mechanisms. Thus, an appropriate constitutive model/criterion is required as most of the current model/criteria are not developed for a weak rock material honoring the non-linearity and post failure (softening) process. Therefore, a new and novel elasto-plastic constitutive model for sandstone rock has been investigated and developed. The effort started with a sequence of triaxial tests at different confining pressures on core samples. Different types of rock have been tested during the developing and validation of the constitutive model. Comparison with other existing failure criteria was also performed. As the results, the newly developed constitutive model is better honoring the full spectrum of elasto-plastic rock mechanical behavior (softening and post-failure) which is important for oil and gas applications, specifically for sand production and drilling i.e. failure stabilization due to stress relief. The formulation and process are demonstrated with a case study for an old gas field, where a few gas wells have been shut-in due to severe sand production. The sand production predictive models have been validated with downhole pressure. The wells have been side-tracked and recompleted using the new sand failure prediction, using the new formulation resulted in restoring sand-free production at former rates. The novelty of this study would be in finding the right formula to best design the predictive model and to avoid any sand production when using the newly developed constitutive model.


2013 ◽  
Vol 554-557 ◽  
pp. 2103-2110 ◽  
Author(s):  
Zhen Ming Yue ◽  
Celal Soyarslan ◽  
Houssem Badreddine ◽  
Khemais Saanouni ◽  
A. Erman Tekkaya

A hybrid experimental-numerical methodology is presented for the identification of the model parameters regarding a mixed hardening anisotropic finite plasticity fully coupled with isotropic ductile damage in which the micro-crack closure effect is given account for, for steel sheets made of DP1000. The experimental tests involve tensile tests with smooth and pre-notched specimens and shear tests with specimen morphologies recently proposed by D.R. Shouler, J.M. Allwood (Design and use of a novel sample design for formability testing in pure shear, Journal of Materials Processing Technology, Volume 210, Issue 10, 1 July 2010, Pages 1304-1313). These tests cover stress triaxiality ratios lying between 0 (pure shear) and 1/√3 (plane strain). To neutralize machine stiffness effects displacements of the chosen material surface pixels are kept track of using the digital image correlation system ARAMIS, where recorded inputs are synchronized with force measurements. On the numerical part, developed constitutive model is implemented as user defined material subroutine, VUMAT, for ABAQUS/Explicit. FE models for the test cases are built using 3D brick elements (rather than thin shells) and devising developed VUMAT for the constitutive model, model parameters are identified using an inverse parameter identification procedure where the objective function relies on the difference of experimentally observed-numerically predicted forces for the selected pixel displacements. The validity of the material model and transferability of its parameters are tested using tests involving complex strain paths.


2021 ◽  
Vol 276 ◽  
pp. 01021
Author(s):  
Kai Peng ◽  
Guohui Wang ◽  
Yaolai Liu ◽  
Xiaoliang Wang ◽  
Dong Liu ◽  
...  

In projects, mixed soil slurry between cut-off wall and coarse-grained soil always exists. It may influence on or change mechanical properties of interface between coarse-grained soil and structure. The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under mixed soil slurry. The significant dilatancy and stress-strain softening can be achieved through the results, which also indicate that the cement content play an important role in the shear strength of the interface. The peak strength and the position when the dilatancy occurs are related to both normal stress and cement content. An elasto-plastic constitutive model for interface considering mixed soil slurry was formulated in the framework of generalized potential theory. The entire model parameters can be identified by experimental tests. Finally, the predictions of the model have been compared with experimental results, and results show the model is reasonable and practical.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jinjin Fang ◽  
Yixin Feng

This paper proposed a new elastoplastic constitutive model to predict the deformation and strength behaviour of unsaturated soils. Applying the modified Cambridge model as a generalization, the degree of saturation is introduced into the elastoplastic model of unsaturated soil. Under the condition of ensuring that the model parameters are unchanged, the model is transformed into three dimensions based on the SMP criterion transformation stress method. Enhanced modified van Genuchten model under true triaxial conditions is also proposed in this paper to describe hydromechanical behaviours of unsaturated soils. The proposed constitutive model can capture the observed mechanical and hydraulic behaviours. Then, the model is validated via equal p and equal b value true triaxial tests, and the results show that a reasonable agreement can be obtained.


2021 ◽  
Author(s):  
François Ducobu ◽  
Anthonin Demarbaix ◽  
Olivier Pantalé

When modelling a cutting operation, the constitutive model of the machined material is one of the key parameters to obtain accurate and realistic results. Up to now, the Johnson-Cook model is still the most used, even if an increasing number of models, such as the Hyperbolic TANgent (TANH) model, were introduced last years to overcome its limitations and come closer to the actual material behaviour. Experimental tests on dedicated equipment are usually required to identify the parameters of the constitutive models. This paper introduces the Coupled Eulerian-Lagrangian (CEL) formalism to model in 3D the Taylor impact test, one of the common tests to perform that parameters identification. Indeed, one identification way involves modelling the test to determine the constitutive model parameters by comparing the experimental and the numerical samples geometries. The developed CEL model is validated against a Lagrangian reference model for a steel alloy and the Johnson-Cook constitutive model. The main goal of using the CEL method is to get rid of the elements distortion due to the high strains and strain rates during the test. Mesh dependence of the results is highlighted and a recommendation is provided on the mesh to adopt for future work. The CEL model of the 3D Taylor impact test is then extended to the use of the TANH model. The results are finally compared with that of the Johnson-Cook constitutive model.


2004 ◽  
Vol 261-263 ◽  
pp. 723-728
Author(s):  
Li Jun Su ◽  
Hong Jian Liao ◽  
Jian Hua Yin

In this paper, a diatomaceous soft rock is studied. Triaxial tests had been conducted on this soft rock. From the test results, it is found that the stress-strain curve of this soft rock has a notable strain-softening tendency. In order to study its time-dependent stress-strain behavior, a constitutive model that can describe not only the strain-hardening behavior, but also the strain-softening behavior must be constructed. Based on Perzyna’s fundamental assumptions of the elastic visco-palstic theory, a visco-plastic flow rule, and Yin and Graham’s 3-D elastic visco-palstic constitutive model (3-D EVP model), the constitutive formulation under a triaxial stress state is obtained in this paper. The derived formulation can be used to simulate the time-dependent stress-strain behavior of both consolidated undrained and consolidated drained triaxial tests of soils and rocks. In this paper, the constitutive formulation is used to simulate the time-dependent stress-strain behavior of consolidated undrained triaxial tests of the soft rock studied in this paper. The simulated results are compared with the triaxial test results. The comparison of the results shows that model predictions agree well with measured results. This demonstrates that the EVP model can be used to describe the time-dependent stress-strain behavior of the soft rock studied in this paper.


2012 ◽  
Vol 40 (1) ◽  
pp. 42-58 ◽  
Author(s):  
R. R. M. Ozelo ◽  
P. Sollero ◽  
A. L. A. Costa

Abstract REFERENCE: R. R. M. Ozelo, P. Sollero, and A. L. A. Costa, “An Alternative Technique to Evaluate Crack Propagation Path in Hyperelastic Materials,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January–March 2012, pp. 42–58. ABSTRACT: The analysis of crack propagation in tires aims to provide safety and reliable life prediction. Tire materials are usually nonlinear and present a hyperelastic behavior. Therefore, the use of nonlinear fracture mechanics theory and a hyperelastic material constitutive model are necessary. The material constitutive model used in this work is the Mooney–Rivlin. There are many techniques available to evaluate the crack propagation path in linear elastic materials and estimate the growth direction. However, most of these techniques are not applicable to hyperelastic materials. This paper presents an alternative technique for modeling crack propagation in hyperelastic materials, based in the J-Integral, to evaluate the crack path. The J-Integral is an energy-based parameter and is applicable to nonlinear materials. The technique was applied using abaqus software and compared to experimental tests.


Sign in / Sign up

Export Citation Format

Share Document