State of the Art of Constitutive Model of Concrete Materials Based on Damage Mechanics

2011 ◽  
Vol 194-196 ◽  
pp. 848-852
Author(s):  
Duo Xin Zhang ◽  
Qing Yun Wang

This study centered on the development of constitutive model of the material based on damage mechanics. Volumetric expansion, unilateral behavior and softening effect have been pointed out as three difficulties during setting constitutive model of concrete, the applicable and deficiency of the existed constitutive relationship been reviewed, and the methods used to deal above difficulties were overviewed, Meanwhile, the background of existed model has been summarized and listed systematically. The development of a thermodynamic approach to constitutive model of concrete, with emphasis on the rigorous and consistency both in the formulation of constitutive models and in the identification of model parameters based on experimental tests has been potential direction of the future study, and hoped furnished basement for the elastic to plastic coupled damage mechanics constitutive model of concrete.

2021 ◽  
Author(s):  
François Ducobu ◽  
Anthonin Demarbaix ◽  
Olivier Pantalé

When modelling a cutting operation, the constitutive model of the machined material is one of the key parameters to obtain accurate and realistic results. Up to now, the Johnson-Cook model is still the most used, even if an increasing number of models, such as the Hyperbolic TANgent (TANH) model, were introduced last years to overcome its limitations and come closer to the actual material behaviour. Experimental tests on dedicated equipment are usually required to identify the parameters of the constitutive models. This paper introduces the Coupled Eulerian-Lagrangian (CEL) formalism to model in 3D the Taylor impact test, one of the common tests to perform that parameters identification. Indeed, one identification way involves modelling the test to determine the constitutive model parameters by comparing the experimental and the numerical samples geometries. The developed CEL model is validated against a Lagrangian reference model for a steel alloy and the Johnson-Cook constitutive model. The main goal of using the CEL method is to get rid of the elements distortion due to the high strains and strain rates during the test. Mesh dependence of the results is highlighted and a recommendation is provided on the mesh to adopt for future work. The CEL model of the 3D Taylor impact test is then extended to the use of the TANH model. The results are finally compared with that of the Johnson-Cook constitutive model.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 782-788 ◽  
Author(s):  
Mehdi Shekarbeigi ◽  
Hasan Sharafi

In the last three decades, the constitutive modelling of concrete evolved considerably. This paper describes various developments in this field based on different approaches such anelasticity, plasticity, continuum damage mechanics, plastic fracturing, endochronic theory, microplane models, etc. In this article the material is assumed to undergo small deformations. Only time independent constitutive models and the issues related to their implementation are discussed


Author(s):  
Nubia Aurora González Molano ◽  
Jacobo Canal Vila ◽  
Héctor González Pérez ◽  
José Alvarellos Iglesias ◽  
M. R. Lakshmikantha

In this study an extensive experimental program has been carried out in order to characterize the mechanical behavior of two weak sandstone formations of an offshore field for application to sand production modeling. The experimental tests included Scratch tests, Triaxial tests and Advanced thick wall cylinder tests (ATWC) where the sand production initiation and the cumulative sand produced were registered. Numerical simulations of experimental tests were then performed using an advanced elasto-plastic constitutive model. Triaxial tests simulations allowed calibrating the constitutive model parameters. These parameters were employed for the numerical simulation of the ATWC in order to determine the equivalent plastic strain threshold required to the onset of sand production observed in laboratory for sanding assessment. Results obtained highlight the importance to use a realistic representation of the rock behavior focusing on post-yield behavior in order to build confidence in model predictions.


Author(s):  
Jean Macedo ◽  
Stéphane Chapuliot ◽  
Jean-Michel Bergheau ◽  
Eric Feulvarch ◽  
Olivier Ancelet ◽  
...  

Abstract In order to investigate the ratcheting behavior and to determine new design rules, some experimental tests were conducted in many countries in the last decades. In France, some tests were carried out under mechanical or thermal cyclic loading to examine this risk. The first section of the current article is addressed to the state of the art concerning the ratcheting effects. The difference between Local and Global Ratcheting is clarified. The second section is dedicated to the experimental observations of ratcheting. The following section describes the constitutive models which are able to simulate material/structural ratcheting responses. The models presented are Linear Kinematic, Armstrong-Frederick, Chaboche, Ohno-Wang and Chen-Jiao-Kim. Finally, the ratcheting rules in design codes are exposed. Both simple and complex rules are presented.


2002 ◽  
Vol 12 (5) ◽  
pp. 252-259 ◽  
Author(s):  
Nattapong Nithi-Uthai ◽  
Ica Manas-Zloczower

Abstract PolyFlow, a software package based on the finite element method was employed to simulate the extrudate swell for polybutadiene of various molecular weight (Mw) and molecular weight distribution (MWD). We calculated the relaxation spectra for the different samples and then inserted the spectra into a standard K-BKZ constitutive model used in the numerical simulations. Accurate predictions of MWD confirm the completeness of frequency range in the oscillatory shear experimental data. In turn, the wholeness of relaxation spectra as substantiated by MWD predictions, sustain the level of confidence when using constitutive models based on these spectra. We demonstrate the importance of using the full range of relaxation spectrum rather than a short range around typical shear rates for the accuracy of the numerical predictions. We found extrudate swell ratio (ESR) to be strongly dependent on MWD and stress conditions at the die exit.


2012 ◽  
Vol 79 (3) ◽  
Author(s):  
Harsha S. Bhat ◽  
Ares J. Rosakis ◽  
Charles G. Sammis

The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, “The Damage Mechanics of Brittle Solids in Compression,” Pure Appl. Geophys., 133(3), pp. 489–521, and generalized by Deshpande and Evans 2008, “Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model,” J. Mech. Phys. Solids, 56(10), pp. 3077–3100. has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ∼10− 6to 103s− 1. Model parameters determined from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.


2011 ◽  
Vol 57 (1) ◽  
pp. 27-44
Author(s):  
M. Cundi

Abstract A multi-laminate constitutive model for soft soils incorporating structural anisotropy is presented. Stress induced anisotropy of strength, which is present in multi-laminate type constitutive models, is augmented by directionally distributed overconsolidation. The model is presented in the elastic-plastic version in order to simulate strength anisotropy of soft clayey soils and destructuration effects. Performance of the model is shown for some element tests and for the numerical simulation of a trial road embankment constructed on soft clays at Haarajoki, Finland. The numerical calculations are completed with the commercial finite element code capable to perform coupled static/consolidation analysis of soils. Problems related to the initiation of in situ stress state, conditions of preconsolidation, as well as difficulties linked to estimation of the model parameters are discussed. Despite simple assumptions concerning field conditions and non-viscous formulation of the constitutive model, the obtained final results are of a sufficient accuracy for geotechnical practice.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Maureen L. Dreher ◽  
Srinidhi Nagaraja ◽  
Jorgen Bergstrom ◽  
Danika Hayman

Computational modeling is critical to medical device development and has grown in its utility for predicting device performance. Additionally, there is an increasing trend to use absorbable polymers for the manufacturing of medical devices. However, computational modeling of absorbable devices is hampered by a lack of appropriate constitutive models that capture their viscoelasticity and postyield behavior. The objective of this study was to develop a constitutive model that incorporated viscoplasticity for a common medical absorbable polymer. Microtensile bars of poly(L-lactide) (PLLA) were studied experimentally to evaluate their monotonic, cyclic, unloading, and relaxation behavior as well as rate dependencies under physiological conditions. The data were then fit to a viscoplastic flow evolution network (FEN) constitutive model. PLLA exhibited rate-dependent stress–strain behavior with significant postyield softening and stress relaxation. The FEN model was able to capture these relevant mechanical behaviors well with high accuracy. In addition, the suitability of the FEN model for predicting the stress–strain behavior of PLLA medical devices was investigated using finite element (FE) simulations of nonstandard geometries. The nonstandard geometries chosen were representative of generic PLLA cardiovascular stent subunits. These finite element simulations demonstrated that modeling PLLA using the FEN constitutive relationship accurately reproduced the specimen’s force–displacement curve, and therefore, is a suitable relationship to use when simulating stress distribution in PLLA medical devices. This study demonstrates the utility of an advanced constitutive model that incorporates viscoplasticity for simulating PLLA mechanical behavior.


Author(s):  
Ricardo Vega ◽  
Jaime A. Cano ◽  
Calvin M. Stewart

Abstract The objective of this study is to introduce a method for creating “material specific” creep continuum damage mechanics-based constitutive models. Herein, material specific is defined as a constitutive model based on the mechanism-informed minimum creep strain rate (MCSR) equations found in deformation mechanism maps and calibrated to available material data. The material specific models are created by finding the best MCSR model for a dataset. Once the best MCSR model is found, the Monkman Grant inverse relationship between the MCSR and rupture time is employed to derive a rupture equation. The equations are substituted into continuum damage mechanics-based creep strain rate and damage evolution equations to furnish predictions of creep deformation and damage. Material specific modeling allows for the derivation of creep constitutive models that can better the material behavior specific to the available data of a material. The material specific framework is also advantageous since it has a systematic framework that moves from finding the best MCSR model, to rupture time, to damage evolution and, creep strain rate. Data for Alloy P91 was evaluated and a material specific constitutive model derived. The material specific model was able to accurately predict the MCSR, creep deformation, damage, and rupture of alloy P91.


Author(s):  
Duncan Field ◽  
Yanis Ammouche ◽  
José-Maria Peña ◽  
Antoine Jérusalem

AbstractA modular pipeline for improving the constitutive modelling of composite materials is proposed.The method is leveraged here for the development of subject-specific spatially-varying brain white matter mechanical properties. For this application, white matter microstructural information is extracted from diffusion magnetic resonance imaging (dMRI) scans, and used to generate hundreds of representative volume elements (RVEs) with randomly distributed fibre properties. By automatically running finite element analyses on these RVEs, stress-strain curves corresponding to multiple RVE-specific loading cases are produced. A mesoscopic constitutive model homogenising the RVEs’ behaviour is then calibrated for each RVE, producing a library of calibrated parameters against each set of RVE microstructural characteristics. Finally, a machine learning layer is implemented to predict the constitutive model parameters directly from any new microstructure. The results show that the methodology can predict calibrated mesoscopic material properties with high accuracy. More generally, the overall framework allows for the efficient simulation of the spatially-varying mechanical behaviour of composite materials when experimentally measured location-specific fibre geometrical characteristics are provided.


Sign in / Sign up

Export Citation Format

Share Document