Dynamic Positioning Observer Design Using Exogenous Kalman Filter

Author(s):  
Song An ◽  
Dengshuo Chen ◽  
Yong Bai

Abstract Observer of a dynamic positioning (DP) system utilizes DP’s measurement data, to predict vessel’s velocities, positions, and unknown environmental forces on the vessel, as well as to handle model uncertainties and errors. Stability and optimality of a DP observer is important for overall DP performance. Nonlinear observer (NLO) designs usually take global asymptotic or exponential stability as the primary goal, and discard the noise. On the other hand, linearized Kalman filter (KF) algorithm, e.g. the extended Kalman filter (EKF), is optimal in minimizing the covariance of observer states by taking both measurement and process noise into account. The applied exogenous Kalman filter (XKF) algorithm in this paper, is a two-stage cascade of NLO and linearized KF, which uses the first-stage NLO estimated states as exogenous inputs for the second-stage linearized KF. XKF approach is proved to have both the stability property inherited from NLO and optimality from linearized KF. Stability and optimality of XKF based observer is studied through DP station-keeping numerical simulations.

Author(s):  
Farid Berrezzek ◽  
Wafa Bourbia ◽  
Bachir Bensaker

<span lang="EN-US">This paper deals with a comparative study of circle criterion based nonlinear observer<em> </em>and <em>H<sub>∞</sub></em> observer for induction motor (IM) drive. The  advantage of the circle criterion approach for nonlinear observer design is that it directly handles the nonlinearities of the system with less restriction  conditions in contrast of the other methods which attempt to eliminate them. However the <em>H<sub>∞</sub></em> observer guaranteed the stability taking into account disturbance and noise attenuation. Linear matrix inequality (LMI) optimization approach is used to compute the gains matrices for the two observers. The simulation results show the superiority of <em>H<sub>∞</sub></em> observer in the sense that it can achieve convergence to the true state, despite the nonlinearity of model and the presence of disturbance.</span>


2014 ◽  
Vol 543-547 ◽  
pp. 2362-2367
Author(s):  
Ye Hai Xie

Considering the problem of dynamic positioning Systems for the slowly-varying disturbances, a new kalman filter using position and acceleration feedback is presented. The kalman filiter separates the WF motions from the measured position and linear acceleration, and estimates the LF position, velocity and acceleration. The stability of this filiter is proven by applying input-to-state (ISS) stability theory. Finally, the computer simulation is given to demonstrate the effectiveness of the proposed method.


Author(s):  
Mahnoosh Shajiee ◽  
Seyed Kamal Hosseini Sani ◽  
Mohammad Bagher Naghibi-Sistani ◽  
Saeed Shamaghdari

In this paper, a novel method for the design of robust nonlinear observer in the [Formula: see text] framework for Lipschitz nonlinear systems is proposed. For this purpose, a new dynamical structure is introduced that ensures the stability of observer error dynamics. Design innovation is the use of dynamic gain in the sliding mode observer. The additional degree of freedom provided by this dynamic formulation is exploited to deal with the nonlinear term. The performance of this stable [Formula: see text] observer is better than conventional static gain observers and the dynamic Luenberger observer. The compensator is designed in such a way that, while ensuring the stability of the closed-loop system, it prevents performance loss in the presence of the nonlinearities. By the proposed approach, the observer is robust to nonlinear uncertainties because of increasing the Lipschitz constant. Also, the design procedure in the presence of system and measurement noises is addressed. Finally, the simulation of our methodology is conducted on a nonlinear system to illustrate the advantage of this work in comparison with other observers.


2014 ◽  
Vol 565 ◽  
pp. 98-106 ◽  
Author(s):  
Younes Al Younes ◽  
Ahmad Drak ◽  
Hassan Noura ◽  
Abdelhamid Rabhi ◽  
Ahmed El Hajjaji

This paper proposes a nonlinear control technique to control the position of the Qball-X4 quadrotor using a cascaded methodology of two Adaptive Integral Backstepping Controllers (AIBC). The nonlinear algorithm uses the principle of Lyapunov methodology in the backstepping technique to ensure the stability of the vehicle, and utilizes the integral action to eliminate the steady state error that caused by the disturbances and model uncertainties, as well as, the adaptation law will estimate the modeling errors caused by assumptions in simplifying the complexity of the quadrotor model. The algorithm goes through two stages of cascaded AIBCs; the first stage aims to stabilize the attitude and the altitude of the quadrotor, and the second stage feeds the first stage with the desired attitude values to control the position of the quadrotor.Flight test results show that the proposed algorithm is capable of controlling the position of the nonlinear quadrotor model.


2018 ◽  
Vol 66 (3) ◽  
pp. 195-212
Author(s):  
Martin Barczyk

Abstract Aided localization, a nonlinear observer design problem, is critical to a range of mobile robotics applications. This paper provides a tutorial presentation of the required background, design steps and calculations of a scan matching-aided localization observer using the novel invariant (symmetry-preserving) observer design methodology. The Invariant Extended Kalman Filter approach is used to systematically obtain the gains of the resulting design, and compared against a conventional, non-invariant Extended Kalman Filter design.


Robotica ◽  
2000 ◽  
Vol 18 (6) ◽  
pp. 601-610 ◽  
Author(s):  
Dong Hwan Kim ◽  
Ji-Yoon Kang ◽  
Kyo-Il Lee

A 6-DOF motion bed is proposed as a nonlinear robust observer to solve the forward kinematics problem of a Stewart platform. The stability of the estimation error dynamics is proved via Lyapunov stability analysis and the error dynamics shows practical stability. An observer design algorithm which tackles the nonlinearity and uncertainty both in the system and in the output is presented by a new arithmetic Riccati equation. The estimation performance for the algorithm is verified using both simulations and experiments. The equation employs the bounding condition computed from the platform dynamics.


Author(s):  
Wei Yue ◽  
Cong-zhi Liu ◽  
Liang Li ◽  
Xiang Chen ◽  
Fahad Muhammad

This work is focused on designing a fractional-order [Formula: see text] observer and applying it into the state of charge (SOC) estimation for lithium-ion battery pack system. Firstly, a fractional order equivalent circuit model based on the fractional capacitor is established and identified. Secondly, the SOC estimation method based on the fractional-order [Formula: see text] observer is proposed. The nonlinear intrinsic relationship between the open-circuit voltage and SOC is described as a polynomial function, and its Lipschitz proposition has been discussed. Then, the nonlinear observer design criterion is established based on the Lyapunov method. Finally, the effectiveness of the proposed method is verified with high accuracy and robustness by the experiment results.


Sign in / Sign up

Export Citation Format

Share Document