Numerical Design Study of Duct and Stator for a Pump-Jet Propulsor

Author(s):  
Xue-Qin Ji ◽  
Chen-Jun Yang ◽  
Xiao-Qian Dong

Abstract The pump-jet propulsor consists of a duct, a rotor and stators which are installed upstream of the rotor to provide pre-swirl flow or downstream of rotor to absorb the kinetic energy in the flow. The strong interactions between the three components and the vehicle are closely related to their design and exert great effect on noise and hydrodynamic performance. This paper attempts to develop an effective and efficient method for the optimal design of the duct and the pre-swirl stators under the influence of vehicle and rotor via viscous flow CFD simulations. In this paper, the two key parameters, attack angle of the duct and pitch angle of pre-swirl stators, are investigated. The numerical simulations are based on the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations using a two-layer realizable k-ε model for turbulence closure. The computational domain is discretized into mixed unstructured cells. The software package STAR-CCM+ is used for both grid generations and flow simulations. The rotor is replaced by the body-force model which is proposed according to the load distribution of the rotor in pump-jet propulsor. Total thrust of body force balances the resistance of a fully-appended underwater vehicle and its propulsor in the self-propulsion simulations and torque is determined by assuming that the propulsive efficiency is 80%. To the end of the optimal design, the total resistance, as the main consideration, and detailed flow field, such as pressure distribution, are numerically investigated for varied attack angles of the duct and pitch angles of pre-swirl stator. It is shown that the two parameters have significant impact on the performance of the propulsor and the recommended design is given.

Author(s):  
Hanxuan Zeng ◽  
Xinqian Zheng ◽  
Mehdi Vahdati

Abstract The occurrence of stall and surge in axial compressors has a great impact on the performance and reliability of aero-engines. Accurate and efficient prediction of the key features during these events has long been the focus of engine design processes. In this paper, a new body-force model that can capture the three-dimensional and unsteady features of stall and surge in compressors at a fraction of time required for URANS computations is proposed. To predict the rotating stall characteristics, the deviation of local airflow angle from the blade surface is calculated locally during the simulation. According to this local deviation, the computational domain is divided into stalled and forward flow regions, and the body-force field is updated accordingly; to predict the surge characteristics, the local airflow direction is used to divide the computational domain into reverse flow regions and forward flow regions. A single-stage axial compressor and a three-stage axial compressor are used to verify the proposed model. The results show that the method is capable of capturing stall and surge characteristics correctly. Compared to the traditional fully three-dimensional URANS method (fRANS), the simulation time for multi-stage axial compressors is reduced by 1 to 2 orders of magnitude.


Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


Author(s):  
Vaibhav K. Arghode ◽  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Thomas S. Weiss ◽  
Gary Meyer

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using Particle Image Velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.


Author(s):  
Palak Saini ◽  
Jeff Defoe

Abstract Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect this has on the body force model predictions is unknown and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases, and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.


Author(s):  
Quentin J. Minaker ◽  
Jeffrey J. Defoe

Modern aircraft engines must accommodate inflow distortions entering the engines as a consequence of modifying the size, shape, and placement of the engines and/or nacelle to increase propulsive efficiency and reduce aircraft weight and drag. It is important to be able to predict the interactions between the external flow and the fan early in the design process. This is challenging due to computational cost and limited access to detailed fan/engine geometry. In this, the first part of a two part paper, we present a design process that produces a fan gas path and body force model with performance representative of modern high bypass ratio turbofan engines. The target users are those with limited experience in turbomachinery design or limited access to fan geometry. We employ quasi-1D analysis and a series of simplifying assumptions to produce a gas path and the body force model inputs. Using a body force model of the fan enables steady computational fluid dynamics simulations to capture fan–distortion interaction. The approach is verified for the NASA Stage 67 transonic fan. An example of the design process is also included; the model generated is shown to meet the desired fan stagnation pressure ratio and thrust to within 1%.


2016 ◽  
Vol 26 (7) ◽  
pp. 2048-2065 ◽  
Author(s):  
William Thollet ◽  
Guillaume Dufour ◽  
Xavier Carbonneau ◽  
Florian Blanc

Purpose The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to capture interactions between a fan and an air intake at reduced cost, as compared to full annulus unsteady computations. Design/methodology/approach The blade effects on the flow are taken into account by adding source terms to the Navier-Stokes equations. These source terms give the proper amount of flow turning, entropy, and blockage to the flow. Two different approaches are compared: the source terms can be computed using an analytic model, or they can directly be extracted from RANS computations with the blade’s geometry. Findings The methodology is first applied to an isolated rotor test case, which allows to show that blockage effects have a strong impact on the performance of the rotor. It is also found that the analytic body force model underestimates the mass flow in the blade row for choked conditions. Finally, the body force approach is used to capture the coupling between a fan and an air intake at high angle of attacks. A comparison with full annulus unsteady computations shows that the model adequately captures the potential effects of the fan on the air intake. Originality/value To the authors’ knowledge, it is the first time that the analytic model used in this paper is combined with the blockage source terms. Furthermore, the capability of the model to deal with flows in choked conditions was never assessed.


1998 ◽  
Vol 26 ◽  
pp. 289-295
Author(s):  
Mohamed Naaim ◽  
Thierry Pellarin

In this paper, numerical and experimental approaches are applied to analyse the dynamics of the front of a gravity current. This study focused on two parameters: internal density and velocity fields. The salt concentration was determined by a potentiometric process. The internal velocities were determined using an optical device and an image-processing system. The structure of the head of the gravity current was analysed. Its density was measured and two stages of evolution were observed. This analysis allows us to coufirm the existence of two important stages. Forxf<xs, where the dynamics depend on the initial condition, the flow consists of a head and body and the front density is constant. Forxf>xs, we show that the density of the front decreases and evolves towards the Hallworth and others (1993) law. From a comparison between the experiments and the numerical model, we show that the numerical model, which is based on Navier–Stokes equations and on thek−Lturbulence model (whereLis the height of the gravity current), can predict well flow in the slump regime and in the inertia–buoyancy regime with smoothed results in the transition from the head to the body of the gravity current.


2014 ◽  
Author(s):  
Ping Lu ◽  
Sue Wang

In the present study, the hydrodynamic performance of a typical North Sea dynamic positioning (DP) shuttle tanker consisting of two main propellers, two rudders, and two bow tunnel thrusters is investigated by solving Reynolds-averaged Navier-Stokes (RANS) equations for a viscous flow. The focus of the numerical simulation is on the performance of propellers/rudders and bow tunnel thrusters considering the hydrodynamic interactions between propellers/thrusters, hull and current. The numerical model includes hull, propeller, rudder, bow tunnel thruster and flow field. First, an analysis of a propeller performance in open water is carried out by calculating the coefficient of thrust, torque, and propeller efficiency. Then, rudders are included in the analysis for the assessment of propeller/rudder performance. The pressure distribution on rudders, rudder’s drag and lift coefficients for different angles of attack, and flow field around the rudder are obtained. The interaction effects between propeller, rudder, ship hull, as well as bow tunnel thruster and ship hull are analyzed by adding detailed ship hull geometry in the computational domain. The tunnel thruster efficiency reduction due to current and ventilation is also analyzed. The presence of current leads to significant changes in the flow velocity and distribution of pressure in the tunnel outflow area as well as significant deflection of the propeller jet emitting from the tunnel. A comparison between Computational Fluid Dynamics (CFD) and model test results of flow features near the tunnel area with various current speeds is presented.


Author(s):  
S. Pazireh ◽  
J. J. Defoe

Abstract Body force modelling in numerical simulations of axial compressors and fans has been used extensively in the literature to assess aerodynamic performance in uniform and non-uniform flow at relatively low computational cost. Existing approaches require calibration or, in the case of purely analytical models, are unable to accurately predict losses. It can also be challenging to capture the chordwise loading distribution with existing analytical models. This paper introduces a new body force modelling approach in which blade loading is computed using an isolated-airfoil, analytical model supplemented by a trained artificial-neural-network-based correction factor for finite pitch effects. The loading model is derived from potential flow theory and accounts for both camber and thickness effects; it captures both the overall and local loading. The approach is currently implemented for low-Mach number (incompressible) flows. The body forces causing flow turning derive directly from the corrected loading model. Forces arising from viscous losses are modeled by solving the integral boundary layer equations along streamlines within blade rows based on the fictitious edge velocities computed by the loading model. The viscous loss force is a function of the local dissipation coefficients. The approach is implemented within a traditional finite-volume computational fluid dynamics solver. In this paper, the application is limited to 2D cascades. To assess the approach, results from the body force model are compared to blade-to-blade solutions from MISES. The key findings are (1) that a relatively modest set of training data for the neural network produces a robust finite pitch correction, and (2) that the modelling approach is able to successfully capture the flow turning and losses associated with a variety of low-speed compressor cascades without any calibration specific to the blade row(s) being modeled.


2021 ◽  
pp. 1-37
Author(s):  
Palak Saini ◽  
Jeff Defoe

Abstract Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades' effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect this has on the body force model predictions is unknown and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases, and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied.


Sign in / Sign up

Export Citation Format

Share Document