Cyclic Response and Instability Analysis of Seabed With Cohesionless Soils Due to Surging Waves

2021 ◽  
Author(s):  
Amin Rafiei ◽  
M. A. Gabr ◽  
M. S. Rahman ◽  
Majid Ghayoomi

Abstract Surface waves may generate significant loadings on the seabed destabilizing sediments and the supporting marine structures. This threat is more pronounced in shallower water depths where the cyclic wave loading may induce residual pore water pressure in sediments triggering soil liquefaction. In this paper, a coupled numerical framework is presented to evaluate the interaction of waves and horizontal seabed considering nonlinear cyclic behavior of the cohesionless soil. A simple experimental model is employed for concurrent simulation of nonlinear buildup of pore pressure and deformation of saturated sand subjected to the cyclic loadings. The model (in elemental scale) is incorporated into a finite element code to solve the interaction of wave and seabed. Poro-elastoplastic response of the seabed is obtained by modifying the Biot’s coupled flow-and-deformation equations by adding equivalent nodal force terms associated with residual deformations of the soil. Potential flow theory is adopted for the fluid domain to model wave-induced pressure and flow fields. The governing equations and boundary conditions are solved using finite element analysis in time domain. The numerical framework is verified against results of cyclic triaxial compression tests and analytical solutions. Parametric studies are conducted to evaluate the effects of wave characteristics on triggering the residual liquefaction. The numerical results indicate good agreements with experimental measures. The results also show that for large waves, the progressive buildup of pore pressure in sediments may become high enough, leading to residual liquefaction. The details of the numerical model and the potential of residual liquefaction within the seabed soil are discussed.

2009 ◽  
Vol 46 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Abbas Soroush ◽  
Hossein Soltani-Jigheh

Soil structures are often comprised or supported by soils that are mixtures of cohesive and granular geomaterials. These soils are termed as intermediate or mixed soils and are widely found in natural deposits and man-made soil structures. The objective of this paper is to study the behavior of mixed clayey soils under monotonic, cyclic, and post-cyclic monotonic loading, with the main focus on the last of these three. For this purpose, a number of strain-controlled monotonic, cyclic, and post-cyclic triaxial compression tests were carried out on “clay–sand” and “clay–gravel” mixtures in undrained conditions. The effects of sand (or gravel) contents, number of cycles, cyclic strain amplitude, consolidation pressure, and grain size on the mechanical behavior of the mixtures are evaluated. The major findings from the laboratory study are: (i) the addition of granular materials to the clayey soils increases excess pore-water pressure during strain-controlled monotonic undrained shearing and cyclic loading and (ii) during post-cyclic monotonic shearing, mixed clayey soils behave similarly to overconsolidated soils; the higher the granular material is, the higher the overconsolidation ratio would be. Based on the research results, an algorithm for estimating post-cyclic mechanical parameters of mixed clayey soils, without conducting cyclic and post-cyclic tests, is suggested.


2001 ◽  
Vol 38 (2) ◽  
pp. 276-286 ◽  
Author(s):  
A Porbaha ◽  
T BS Pradhan ◽  
T Kishida

This study presents the results of a series of monotonic undrained triaxial compression tests on clay specimens improved by columnar reinforcement. The process of loading and stress redistribution of a fly ash – clay specimen (FCS), in comparison with a sand–clay specimen (SCS), is examined in terms of stress–strain characteristics, generation of excess pore-water pressure, effective and total earth pressures, development of stress concentration, and the normalized undrained shear strength of the improved soil. It was found, predictably, that the deviator stress of the composite specimens was influenced by the consolidation stress, replacement area ratio, and properties of the column material. The stress concentration at the top of the composite ground which depends on the loading stage reaches a peak after the consolidation state and is reduced due to stress redistribution between the column and the soft ground. In terms of improvement effects, the mean shear strengths of FCS and SCS relative to the clay specimen are three and seven times greater, respectively, for a replacement area ratio of 49%.Key words: composite ground, fly ash, soil improvement, soft ground, triaxial test.


1995 ◽  
Vol 32 (5) ◽  
pp. 819-834 ◽  
Author(s):  
Mohammed M. Morsy ◽  
D.H. Chan ◽  
N.R. Morgenstern

An effective stress constitutive model to study the problem numerically of creep in the field is presented. A double-yield surface model for the stress–strain–time behaviour of wet clay is described. The model adopts the concept of separating the total deformation into immediate and delayed components. The yield surfaces employed are the modified Cam-clay ellipsoid and the Von Mises cylinder inscribed in the ellipsoid. The proposed numerical scheme incorporates the pore pressure based on field observations into a finite element analysis. An interpolation technique is used to determine the pore pressure at every element. A field example is presented to illustrate the interpolation technique procedure. The scheme not only avoids the complexity of making predictions of pore-water pressure, but also allows the analysis to be carried out in terms of effective stresses based on the actual observed pore pressure. Two stress integration algorithms based on the implicit calculation of plastic strain are implemented and tested for the double-yield surface model. A numerical simulation of stress-controlled drained creep tests confirms the numerical procedure. Key words : constitutive equations, creep, finite element, stress integration algorithms, effective stress approach, pore-water pressure.


2001 ◽  
Vol 38 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Guoxi Wu

A nonlinear effective stress finite element approach for dynamic analysis of soil structure is described in the paper. Major features of this approach include the use of a third parameter in the two-parameter hyperbolic stress-strain model, a modified expression for unloading–reloading modulus in the Martin–Finn–Seed pore-water pressure model, and an additional pore-water pressure model based on cyclic shear stress. The additional pore-water pressure model uses the equivalent number of uniform cyclic shear stresses for the assessment of pore-water pressure. Dynamic analyses were then conducted to simulate the seismically induced soil liquefaction and ground deformation of the Upper San Fernando Dam under the 1971 San Fernando Earthquake. The analyses were conducted using the finite element computer program VERSAT. The computed zones of liquefaction and deformation are compared with the measured response and with results obtained by others.Key words: effective stress method, finite element analysis, Upper San Fernando Dam, earthquake deformation, VERSAT.


1994 ◽  
Vol 31 (2) ◽  
pp. 204-214 ◽  
Author(s):  
Chang-Yu Ou ◽  
Ching-Her Lai

This paper presents an application of finite-element analysis to deep excavation in layered sandy and clayey soil deposits using a combination of the hyperbolic and the Modified Cam-clay models. In the analysis, the drained behavior of cohesionless soil and the undrained behavior of cohesive soil were simulated using the hyperbolic and Modified Cam-clay models, respectively. A rational procedure for determining soil parameters for each of the models was established. A simulation of the dewatering process during excavation was proposed. The analytical procedure was confirmed through an analysis of three actual excavation cases. Finally, analyses considering pore-water pressure dissipation during the actual elapsed time for each construction phase were carried out. The results indicate that the calculated displacement of a retaining wall during excavation is smaller than that given by undrained analysis. It was thought that some degree of pore-water pressure dissipation actually occurs during the intermediate excavation stages. This results in a decrease in the final deformation of the wall and ground.-surface settlement than would be predicted by undrained analysis. Key words : finite-element analysis, deep excavation, hyperbolic model, Cam-clay model.


1973 ◽  
Vol 10 (4) ◽  
pp. 652-663
Author(s):  
A. Sridharan ◽  
S. Narasimha Rao

Ever since Hvorslev proposed a failure criterion incorporating intrinsic parameters, several test procedures have come into practice to determine these ‘true’ strength parameters. Several consolidated undrained triaxial compression tests with pore water pressure measurement were conducted on both montmorillonite and kaolinite clays and the results were analyzed using different existing methods. All the methods through which the data were analyzed fail to assign any unique true strength parameters. Even a particular method yields different values depending upon the initial conditions (stress history, water content) of the sample and stress level during testing. It has been reasoned that these variations are due to the probable differences in fabric between the samples which are involved in various methods. There seems to be a unique linear relationship between tan [Formula: see text] and Cc/pe irrespective of the sample state, stress level, and stress history in both undisturbed and remolded conditions for all the procedures adopted.


2012 ◽  
Vol 204-208 ◽  
pp. 50-53
Author(s):  
Zhong Ming He ◽  
Wei Wu ◽  
Ling Zeng ◽  
Zhong Xin Cai

A numerical model was built by Finite Element software,discussed the effect of rainfall on slope pore water pressure、volatile water content and depth of infiltration in rainstorm condition. The results indicated that: (1)the variation of slope surface pore water pressure is more significant and the depth of infiltration is larger with the increase of rainfall intensity on the condition of fixed rainfall duration;(2)The slope section appears three pore water pressure divisions: transient saturated zone、negative pressure region and hydrostatic pressure area after the rainfall.


2012 ◽  
Vol 238 ◽  
pp. 451-454
Author(s):  
Zhong Ming He ◽  
Wei Wu ◽  
Ling Zeng ◽  
Zhong Xin Cai

A numerical model is built by Finite Element Software, discussed the effect of rainfall on slope pore water pressure, volatile water content and depth of infiltration in continuous rain condition. The result indicated that when the rainfall intensity and rainfall duration reach a certain condition, the ground water table rises slowly, and mostly, the spill points of ground water locate in the foot of slope. The slope section appears three pore water pressure divisions: transient saturated zone, negative pressure region and hydrostatic pressure area after the rain.


2013 ◽  
Vol 353-356 ◽  
pp. 562-570 ◽  
Author(s):  
Zai Bin Liu

In order to study sandstone rock strength and deformation parameters under pore water pressure conditions, triaxial compression tests of different hydraulic pressure were executed. Fitting equations of fine sandstone confining pressure and hydraulic pressure coupling effects were established. This research show that fine sandstone rock strength increases with confining pressure increases. Rock mass strength and cohesion have negative exponential relationship with hydraulic pressure. When the hydraulic pressure is 3MPa, elasticity and confining pressure fit to logarithmic relationship. Fine sandstone Elasticity modulus decreases with hydraulic pressure increases. Poisson’s ration and hydraulic pressure fit to linear relationship.


Sign in / Sign up

Export Citation Format

Share Document