Numerical Simulation of High Temperature Solar Receiver and Thermal Receiver for Solar Micro Gas Turbine

Author(s):  
Koji Matsubara ◽  
Sho Isojima ◽  
Mitsuho Nakakura ◽  
Yuji Yamada ◽  
Shota Kawagoe

Numerical simulation was made for high-temperature solar and thermal receivers of pressurized air for solar micro gas turbine system. The solar / biomass hybrid gas turbine was considered to generate 30kW to 100kW power. The gas turbine system was provided with the concentrated solar light from the dish reflector at the solar receiver and the combustion heat from the biomass synthesis gas at the thermal receiver. Numerical model was developed to the solar receiver and the thermal receiver to reveal their thermal potential. The solar receiver was a close loop concentric annuli to receive highly condensed solar light of 1,000kW/m2. The inner cylinder was made of high-temperature resistance ceramic irradiated by the condensed light on the inner side. The liner was inserted between the inner cylinder and the outer shell. The pressurized air passes the many holes of the liner to impinge the outer surface of the irradiation wall. These impinging jets caused high heat transfer coefficient on the irradiation wall and alleviates the thermal distribution in the receiver aisle. The liner and the outer shell were made by the high temperature resistance INCONEL alloy. The thermal receiver was also a close loop annuli. This uses the same part as the solar receiver and the biomass gas combustor combined to it. The combustor comprises of the liner and the center tube, installed to the inside of the ceramic cylinder. The biomass gas was provided to the gap between liner and the center tube, and the oxidant air to the outer side of the liner. The biomass gas was spouted from the many holes of the liner and mixed with the oxidant air. The resulted hot combustion gas impinged directly to the inner side of the ceramic cylinder. The impingement of the hot combustion gas thinned the thermal boundary layer and enhanced the heat transfer on the ceramic wall. The thermal receiver was designed to attain the preferable heat transfer performance by the inner impinging jet of the hot combustion gas as well as the outer impinging jet of the pressurized air. Three dimensional numerical model was developed to the solar receiver and the thermal receiver considered in the present study using ANSYS FLUENT. Parameter study showed that the exit air from the solar receiver was heated above 1200K or higher presently, and was continued to search better condition and better configuration of the system to obtain higher temperature. The numerical simulation revealed that the distance from the jet nozzle (linear holes) and the heat transfer surface is critical to the thermal distribution. The concept of the new solar and thermal receivers was confirmed on their usefulness; the multiple impinging jet effectively enhanced the heat transfer on the ceramic wall of the solar receiver and the thermal receiver to reduce the thermal inhomogeneity near the heat transfer surface with pressure loss of order 800Pa.

2010 ◽  
Vol 123-125 ◽  
pp. 459-462
Author(s):  
Choul Jun Choi ◽  
Jung Ki Lee ◽  
Lee Ku Kwac ◽  
Jae Yeol Kim

Combustion gas of gas turbine is about 1100 ~ 1300 °C. Is doing TBC(Thermal Barrier Coating) on the base metal surface to protect rotor or blade from high temperature flame. TBC system reduced heat transfer as metal base metal. TBC system is divided by bond coating of prevent oxidation and corrosion and Top coating reduced of heat transfer by high Temperature flame. The objective of this study was to development of an advance TBC system for high Temperature (>1350°C) gas turbine components. Used coating powder developed newly in coating process, and more than 1350°C by parameter control in usable coating method develop. Internal studies looked at the effect of TBC coating thickness, material chemistry, substrate composition, surface temperature and bond coat as-sprayed surface profile/particle size on technical performance.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Author(s):  
Aleksei S. Tikhonov ◽  
Andrey A. Shvyrev ◽  
Nikolay Yu. Samokhvalov

One of the key factors ensuring gas turbine engines (GTE) competitiveness is improvement of life, reliability and fuel efficiency. However fuel efficiency improvement and the required increase of turbine inlet gas temperature (T*g) can result in gas turbine engine life reduction because of hot path components structural properties deterioration. Considering circumferential nonuniformity, local gas temperature T*g can reach 2500 K. Under these conditions the largest attention at designing is paid to reliable cooling of turbine vanes and blades. At present in design practice and scientific publications comparatively little attention is paid to detailed study of turbine split rings thermal condition. At the same time the experience of modern GTE operation shows high possibility of defects occurrence in turbine 1st stage split ring. This work objective is to perform conjugate numerical simulation (gas dynamics + heat transfer) of thermal condition for the turbine 1st stage split ring in a modern GTE. This research main task is to determine the split ring thermal condition by defining the conjugate gas dynamics and heat transfer result in ANSYS CFX 13.0 package. The research subject is the turbine 1st stage split ring. The split ring was simulated together with the cavity of cooling air supply from vanes through the case. Besides turbine 1st stage vanes and blades have been simulated. Patterns of total temperature (T*Max = 2000 °C) and pressure and turbulence level at vanes inlet (19.2 %) have been defined based on results of calculating the 1st stage vanes together with the combustor. The obtained results of numerical simulation are well coherent with various experimental studies (measurements of static pressure and temperature in supply cavity, metallography). Based on the obtained performance of the split ring cooling system and its thermal condition, the split ring design has been considerably modified (one supply cavity has been split into separate cavities, the number and arrangement of perforation holes have been changed etc.). All these made it possible to reduce considerably (by 40…50 °C) the split ring temperature comparing with the initial design. The design practice has been added with the methods which make it possible to define thermal condition of GTE turbine components by conjugating gas dynamics and heat transfer problems and this fact will allow to improve the designing level substantially and to consider the influence of different factors on aerodynamics and thermal state of turbine components in an integrated programming and computing suite.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


Author(s):  
Narihito Nakagawa ◽  
Hideki Ohtsubo ◽  
Kohji Shibata ◽  
Atsuyuki Mitani ◽  
Kazutoshi Shimizu ◽  
...  

Melt growth composites (MGCs) have a unique microstructure, in which continuous networks of single-crystal phases interpenetrate without grain boundaries. Therefore, the MGCs have excellent high-temperature strength characteristics, creep resistance, oxidation resistance and thermal stability in an air atmosphere at very high temperature. To achieve ultra-high thermal efficiency and low NOx emission for gas turbine systems, non-cooled turbine nozzle vanes and heat shield panels of combustor liners has been fabricated on an experimental basis. These components are thermally stable after heat treatment at 1700°C for 1000 hours in an air atmosphere. In addition, we have just started the exposure tests to evaluate the influence of combustion gas flow environment on MGCs.


2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


Sign in / Sign up

Export Citation Format

Share Document