Turbine Split Rings Thermal Design Using Conjugate Numerical Simulation

Author(s):  
Aleksei S. Tikhonov ◽  
Andrey A. Shvyrev ◽  
Nikolay Yu. Samokhvalov

One of the key factors ensuring gas turbine engines (GTE) competitiveness is improvement of life, reliability and fuel efficiency. However fuel efficiency improvement and the required increase of turbine inlet gas temperature (T*g) can result in gas turbine engine life reduction because of hot path components structural properties deterioration. Considering circumferential nonuniformity, local gas temperature T*g can reach 2500 K. Under these conditions the largest attention at designing is paid to reliable cooling of turbine vanes and blades. At present in design practice and scientific publications comparatively little attention is paid to detailed study of turbine split rings thermal condition. At the same time the experience of modern GTE operation shows high possibility of defects occurrence in turbine 1st stage split ring. This work objective is to perform conjugate numerical simulation (gas dynamics + heat transfer) of thermal condition for the turbine 1st stage split ring in a modern GTE. This research main task is to determine the split ring thermal condition by defining the conjugate gas dynamics and heat transfer result in ANSYS CFX 13.0 package. The research subject is the turbine 1st stage split ring. The split ring was simulated together with the cavity of cooling air supply from vanes through the case. Besides turbine 1st stage vanes and blades have been simulated. Patterns of total temperature (T*Max = 2000 °C) and pressure and turbulence level at vanes inlet (19.2 %) have been defined based on results of calculating the 1st stage vanes together with the combustor. The obtained results of numerical simulation are well coherent with various experimental studies (measurements of static pressure and temperature in supply cavity, metallography). Based on the obtained performance of the split ring cooling system and its thermal condition, the split ring design has been considerably modified (one supply cavity has been split into separate cavities, the number and arrangement of perforation holes have been changed etc.). All these made it possible to reduce considerably (by 40…50 °C) the split ring temperature comparing with the initial design. The design practice has been added with the methods which make it possible to define thermal condition of GTE turbine components by conjugating gas dynamics and heat transfer problems and this fact will allow to improve the designing level substantially and to consider the influence of different factors on aerodynamics and thermal state of turbine components in an integrated programming and computing suite.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4020
Author(s):  
Peng Sun ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Youlian Lu ◽  
Tianjiao Liang ◽  
...  

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
Xu Zhang ◽  
Hongyi Shao ◽  
Wenwu Zhou ◽  
Wei Zhe Wang ◽  
YingZheng Liu

Abstract In a steam turbine system, one of the main factors limiting the operational flexibility is the thermal stress associated with a high temperature gradient within the control valves, which often leads to structural damage during frequent start-up and shut-down cycles. One possible solution is to utilize an electric heating system with appropriate insulation to decrease the warm-up time. Here, an experiment and a numerical simulation were performed using a scaled turbine valve equipped with an electric heating system to understand the heat transfer process. The experiment was conducted at Shanghai Jiao Tong University and had a duration of 100 hours, including three heating-cooling cycles and two heat preservation states. The simulation, which used the commercial software Ansys Fluent 2019 R1 with the finite volume method, was performed to model the experimental heat transfer process. The simulated results showed less than 10% deviation from the measured temperatures. To further improve the computing efficiency, a simplified model based on the lumped parameter method was proposed and validated. This model can predict the valve temperature in less than 1 minute and showed good agreement for all of the studied cases. The ability of the simplified model to simulate the valve heating-cooling cycles at a high efficiency could accelerate the thermal design process to improve the operational flexibility of steam turbines in the future.


Author(s):  
Francisco J. T. Cunha ◽  
David A. DeAngelis

In the design and development of modern gas turbine machines for efficient power generation in combined cycle applications, nozzle segments with airfoils and sidewalls need to be effectively cooled to operate in gas temperature environments in the excess of the melting point of the material of construction. Particular attention is given to the thermal evaluation as it affects component design life and performance. In this context, an optimization methodology is prescribed for inverse determination of required coolant heat transfer as a function of hot gas conditions and subjected to constraints associated with allowable metal temperature. A general boundary element method is used in the optimization process to provide a relatively fast and economically feasible design procedure. The optimized set of heat transfer results are converged when the external metal temperatures fall within acceptable limits. Once the magnitude and distribution of required coolant heat transfer coefficients are obtained, the cooling technique can be devised using available or referenced correlations for impingement jets through insert plates, banks of pin fins, turbulators, or just simply forced convection through internal passages. An illustrative example is presented with a Joukowski airfoil using a finite element method as an alternative method of solution for comparison and verification.


Author(s):  
Koji Matsubara ◽  
Sho Isojima ◽  
Mitsuho Nakakura ◽  
Yuji Yamada ◽  
Shota Kawagoe

Numerical simulation was made for high-temperature solar and thermal receivers of pressurized air for solar micro gas turbine system. The solar / biomass hybrid gas turbine was considered to generate 30kW to 100kW power. The gas turbine system was provided with the concentrated solar light from the dish reflector at the solar receiver and the combustion heat from the biomass synthesis gas at the thermal receiver. Numerical model was developed to the solar receiver and the thermal receiver to reveal their thermal potential. The solar receiver was a close loop concentric annuli to receive highly condensed solar light of 1,000kW/m2. The inner cylinder was made of high-temperature resistance ceramic irradiated by the condensed light on the inner side. The liner was inserted between the inner cylinder and the outer shell. The pressurized air passes the many holes of the liner to impinge the outer surface of the irradiation wall. These impinging jets caused high heat transfer coefficient on the irradiation wall and alleviates the thermal distribution in the receiver aisle. The liner and the outer shell were made by the high temperature resistance INCONEL alloy. The thermal receiver was also a close loop annuli. This uses the same part as the solar receiver and the biomass gas combustor combined to it. The combustor comprises of the liner and the center tube, installed to the inside of the ceramic cylinder. The biomass gas was provided to the gap between liner and the center tube, and the oxidant air to the outer side of the liner. The biomass gas was spouted from the many holes of the liner and mixed with the oxidant air. The resulted hot combustion gas impinged directly to the inner side of the ceramic cylinder. The impingement of the hot combustion gas thinned the thermal boundary layer and enhanced the heat transfer on the ceramic wall. The thermal receiver was designed to attain the preferable heat transfer performance by the inner impinging jet of the hot combustion gas as well as the outer impinging jet of the pressurized air. Three dimensional numerical model was developed to the solar receiver and the thermal receiver considered in the present study using ANSYS FLUENT. Parameter study showed that the exit air from the solar receiver was heated above 1200K or higher presently, and was continued to search better condition and better configuration of the system to obtain higher temperature. The numerical simulation revealed that the distance from the jet nozzle (linear holes) and the heat transfer surface is critical to the thermal distribution. The concept of the new solar and thermal receivers was confirmed on their usefulness; the multiple impinging jet effectively enhanced the heat transfer on the ceramic wall of the solar receiver and the thermal receiver to reduce the thermal inhomogeneity near the heat transfer surface with pressure loss of order 800Pa.


Author(s):  
Krishna Kant Agarwal ◽  
Stefano Gori

Temperature profile variations in gas turbine combustors are important from the considerations of thermal stresses and material fatigue. The specific profile being addressed in this study is the combustor exit gas temperature profile in radial direction at first stage nozzle entry (also called the combustor transition-piece (TP) exit profile). Normally, in multi-can combustor configurations, this profile is assumed to be constant along the circumferential direction or from one can to another. However, field test on one of the GE-MS5002D class machine revealed that the shape of the combustor TP exit temperature profile is varying across the different cans. It is important to assess the reason of this behavior in order to define thermal input for stage 1 nozzle thermal design and define an average temperature profile for turbine bucket verification. For investigating the reasons of varying TP exit profiles across different cans, a reacting flow CFD study is performed for a combined multiple combustor-cans geometry. This is a challenging attempt considering that mesh for a single can liner is itself typically quite large (∼30 million) for capturing all flow features. The present multi-can study was made feasible with judicious simplification of combustor geometry, retaining only important flow features and using adequate mesh to capture system physics. Results indicate that the varying flame shape across different cans is indeed captured in the CFD. Hence, this effect could be something associated with the combustor design. Subsequent detailed post-processing of CFD results revealed the root cause to be associated with the presence of unsymmetrical arrangement of struts in the compressor discharge casing region. This effect is a slight flow-recirculation created much upstream due to the struts, which eventually results in asymmetric distribution of the flow across the combustor dilution holes. This leads to the flame shifting in different orientation for different cans with a systematic reference to the struts position. In conclusion, this paper describes the approach used for multi-can CFD analysis of the combustor, flow behavior in presence of unsymmetrical strut and its impact on the combustor exit temperature profile much downstream.


Sign in / Sign up

Export Citation Format

Share Document