Computer Simulation of Diesel Fueled Engine Processes Using MATLAB and Experimental Investigations on Research Engine

Author(s):  
Shankar Venkataraman ◽  
Reghu Ramawarrier ◽  
Vivek Kozhikkoottungal Satheesh ◽  
Nikhil Mathew Mundupalam ◽  
Siddaling Bhure

The depletion of conventional fuel source at a fast rate and increasing environmental pollution have motivated extensive research in combustion modeling and energy efficient engine design. In the present work, a computer simulation incorporating progressive combustion model using thermodynamic equations has been carried out using MATLAB to evaluate the performance of a diesel engine. Simulations at constant speed and variable load have been carried out for the experimental engine available in the laboratory. For simulation, speed and Air/Fuel ratios, which are measured during the experiment, have been used as input apart from other geometrical details. A state-of-the-art experimental facility has been developed in-house. The facility comprises of a hundred horsepower water cooled eddy current dynamometer with appropriate electronic controllers. A normal load test has been carried out and the required parameters were measured. A six gas analyzer was used for the measurement of NOx, HC, CO2, O2, CO and SOx. and a smoke meter was used for smoke opacity. The predicted Pressure-Volume (PV) diagram was compared with measurements and found to match closely. It is concluded that the developed simulation software could be used to get quick results for parametric studies.

Author(s):  
V. R. Reghu ◽  
V. Shankar ◽  
P. Ramaswamy

The depletion of conventional fuel source at a fast rate and increasing of environment pollution motivated extensive research in energy efficient engine design. In the present work, experimental investigations were carried out on a four-stroke four-cylinder dieselfuelled Base Line Engine (BLE) by conducting a normal load test and measuring the required Brake Thermal Efficiency (BThE) and Specific Fuel Consumption (SFC) in a 100 HP dyno facility. A six-gas Analyser was used for the measurement of Unburnt Hydrocarbons (UBHC), Carbon monoxide (CO), Carbon dioxide (CO2), free Oxygen (O2), Nitrogen oxides (NOx), Sulphur oxides (SOx) and a smoke meter was used to measure smoke opacity. Low Heat Rejection (LHR) engine was realized by coating the crown of the aluminium alloy piston with the most popular Thermal Barrier Coating (TBC) material, namely 8%Yttria Partially Stabilized Zirconia (8YPSZ), after coating qualification on research pistons, specifically fabricated to retain the piston material specification, and the geometry of the crown contour. A normal load test was conducted on LHR engine to evaluate the performance as well as to determine the concentration of pollutants. A ~30% improvement in BThE and ~35% improvement in SFC was exhibited by the LHR engine at all loads studied (7 to 64%). While UBHC level showed an increase, the CO, CO2 and O2 contents as revealed in the emission test showed a mixed response (high and low) for an LHR engine. Compared with BLE, NOx and smoke level in LHR engine emission showed an increasing trend with the load. On comparing BLE and LHR engine test results, value addition to the BLE in terms of reduced fuel consumption and pollutants was observed.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Stefanie Hering ◽  
Nico Schäuble ◽  
Thomas M. Buck ◽  
Brigitta Loretz ◽  
Thomas Rillmann ◽  
...  

Increasing regulatory demands are forcing the pharmaceutical industry to invest its available resources carefully. This is especially challenging for small- and middle-sized companies. Computer simulation software like FlexSim allows one to explore variations in production processes without the need to interrupt the running process. Here, we applied a discrete-event simulation to two approved film-coated tablet production processes. The simulations were performed with FlexSim (FlexSim Deutschland—Ingenieurbüro für Simulationsdienstleistung Ralf Gruber, Kirchlengern, Germany). Process visualization was done using Cmap Tools (Florida Institute for Human and Machine Cognition, Pensacola, FL, USA), and statistical analysis used MiniTab® (Minitab GmbH, Munich, Germany). The most critical elements identified during model building were the model logic, operating schedule, and processing times. These factors were graphically and statistically verified. To optimize the utilization of employees, three different shift systems were simulated, thereby revealing the advantages of two-shift and one-and-a-half-shift systems compared to a one-shift system. Without the need to interrupt any currently running production processes, we found that changing the shift system could save 50–53% of the campaign duration and 9–14% of the labor costs. In summary, we demonstrated that FlexSim, which is mainly used in logistics, can also be advantageously implemented for modeling and optimizing pharmaceutical production processes.


1997 ◽  
Vol 67 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Rangaswamy Rajamanickam ◽  
Steven M. Hansen ◽  
Sundaresan Jayaraman

A computer simulation approach for engineering air-jet spun yarns is proposed, and the advantages of computer simulations over experimental investigations and stand-alone mathematical models are discussed. Interactions of the following factors in air-jet spun yarns are analyzed using computer simulations: yarn count and fiber fineness, fiber tenacity and fiber friction, fiber length and fiber friction, and number of wrapper fibers and wrap angle. Based on the results of these simulations, yarn engineering approaches to optimize strength are suggested.


2008 ◽  
Vol 23 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Jeffrey M. Franc-Law ◽  
Micheal J. Bullard ◽  
F. Della Corte

AbstractIntroduction:Although most hospitals have an emergency department disas- ter plan, most never have been implemented in a true disaster or been tested objectively. Computer simulation may be a useful tool to predict emergency department patient flow during a disaster.Purpose:The aim of this study was to compare the accuracy of a computer simulation in predicting emergency department patient flow during a masscasualty incident with that of a real-time, virtual, live exercise.Methods:History, physical examination findings, and laboratory results for 136 simulated patients were extracted from the disastermed.ca patient database as used as input into a computer simulation designed to represent the emergency department at the University of Alberta Hospital.The computer simulation was developed using a commercially available simulation software platform (2005, SimProcess, CACI Products, San Diego CA). Patient flow parameters were compared to a previous virtual, live exercise using the same data set.Results:Although results between the computer simulation and the live exercise appear similar, they differ statistically with respect to many patient benchmarks. There was a marked difference between the triage codes assigned during the live exercise and those from the patient database; however, this alone did not account for the differences between the patient groups. It is likely that novel approaches to patient care developed by the live exercise group, which are difficult to model by computer software, contributed to differences between the groups. Computer simulation was useful, however, in predicting how small changes to emergency department structure, such as adding staff or patient care areas, can influence patient flow.Conclusions:Computer simulation is helpful in defining the effects of changes to a hospital disaster plan. However, it cannot fully replace participant exercises. Rather, computer simulation and live exercises are complementary, and both may be useful for disaster plan evaluation.


Author(s):  
Pierre Q. Gauthier

The detailed modeling of the turbulence-chemistry interactions occurring in industrial flames has always been the leading challenge in combustion Computational Fluid Dynamics (CFD). The wide range of flame types found in Industrial Gas Turbine Combustion systems has exacerbated these difficulties greatly, since the combustion modeling approach must be able to predict the flames behavior from regions of fast chemistry, where turbulence has no significant impact on the reactions, to regions where turbulence effects play a significant role within the flame. One of these combustion models, that is being used more and more in industry today, is the Flamelet Generated Manifold (FGM) model, in which the flame properties are parametrized and tabulated based on mixture fraction and flame progress variables. This paper compares the results obtained using an FGM model, with a GRI-3.0 methane-air chemistry mechanism, against the more traditional Industrial work-horse, Finite-Rate Eddy Dissipation Model (FREDM), with a global 2-step Westbrook and Dryer methane-air mechanism. Both models were used to predict the temperature distributions, as well as emissions (NOx and CO) for a conventional, non-premixed, Industrial RB211 combustion system. The object of this work is to: (i) identify any significant differences in the predictive capabilities of each model and (ii) discuss the strengths and weakness of both approaches.


2014 ◽  
Vol 933 ◽  
pp. 874-878
Author(s):  
Yun Rui Wang

Inventory is an important link in supply chain, according to characteristics and objectives of inventory control, the reasonable safety inventory, order point, the highest inventory and inventory strategy were determined based on historical sales data. Using Witness simulation software, the optimal strategy was selected from nine inventory strategies by running simulation model for one year. If goods shortage was allowing, the seventh schemes (72000,158100) was better ,the minimum total cost was 888158 yuan ; considering allowing a small amount of shortage, the cost of eighth schemes ( 82000,158100) was least of 1095167; the third scenarios (92000,138100) was selected if without shortage, and the minimum total cost was 1254909 yuan. This shows, the application of computer simulation to assist in the management of inventory is scientific and feasible, it can help enterprises to save the order and operation cost.


2010 ◽  
Vol 40-41 ◽  
pp. 361-365
Author(s):  
Ya Qin Fan ◽  
Hao Fan ◽  
Chao Sun

This paper features of IPSec and MPLS technologies, proposes a suitable MPLS VPN security solutions. The program to solve the VPN using MPLS backbone network in the public transport there is a second layer of information can not automatically encrypt, or connect easily made because of errors due to the interruption of information disclosure and other issues. To verify the proposed security program, the actual MPLS VPN can be simplified, abstracestablishing a simulation system MPLS VPN, and using OPNET simulation software simulation, simulation results of VPN officers practical reference value.


2012 ◽  
Vol 26 ◽  
pp. 135-150 ◽  
Author(s):  
Xiaocheng Liu ◽  
Qiang He ◽  
Xiaogang Qiu ◽  
Bin Chen ◽  
Kedi Huang

Sign in / Sign up

Export Citation Format

Share Document