Comparison of Temperature Fields and Emissions Predictions Using Both an FGM Combustion Model, With Detailed Chemistry, and a Simple Eddy Dissipation Combustion Model With Simple Global Chemistry

Author(s):  
Pierre Q. Gauthier

The detailed modeling of the turbulence-chemistry interactions occurring in industrial flames has always been the leading challenge in combustion Computational Fluid Dynamics (CFD). The wide range of flame types found in Industrial Gas Turbine Combustion systems has exacerbated these difficulties greatly, since the combustion modeling approach must be able to predict the flames behavior from regions of fast chemistry, where turbulence has no significant impact on the reactions, to regions where turbulence effects play a significant role within the flame. One of these combustion models, that is being used more and more in industry today, is the Flamelet Generated Manifold (FGM) model, in which the flame properties are parametrized and tabulated based on mixture fraction and flame progress variables. This paper compares the results obtained using an FGM model, with a GRI-3.0 methane-air chemistry mechanism, against the more traditional Industrial work-horse, Finite-Rate Eddy Dissipation Model (FREDM), with a global 2-step Westbrook and Dryer methane-air mechanism. Both models were used to predict the temperature distributions, as well as emissions (NOx and CO) for a conventional, non-premixed, Industrial RB211 combustion system. The object of this work is to: (i) identify any significant differences in the predictive capabilities of each model and (ii) discuss the strengths and weakness of both approaches.

Author(s):  
Andrea Donini ◽  
Robert J. M. Bastiaans ◽  
Jeroen A. van Oijen ◽  
L. Philip H. de Goey

CFD predictions of flame position, stability and emissions are essential in order to obtain optimized combustor designs in a cost efficient way. However, the numerical modeling of practical combustion systems is a very challenging task. As a matter of fact, the use of detailed reaction mechanisms is necessary for such reliable predictions. Unfortunately, the modeling of the full detail of practical combustion equipment is currently prohibited by the limitations in computing power, given the large number of species and reactions involved. The Flamelet-Generated Manifold (FGM) method reduces these computational costs by several orders of magnitude without loosing too much accuracy. Hereby FGM enables the application of reliable chemistry mechanisms in CFD simulations of combustion processes. In the present paper a computational analysis of partially premixed non-adiabatic flames is presented. In this scope, chemistry is reduced by the use of the FGM method. In the FGM technique the progress of the flame is generally described by a few control variables. For each control variable a transport equation is solved during run-time. The flamelet system is computed in a pre-processing stage, and a manifold with all the information about combustion is stored in a tabulated form. This research applies the FGM chemistry reduction method to describe partially premixed flames in combination with heat loss, which is a relevant condition for stationary gas turbine combustors. In order to take this into account, in the present implementation the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the local equivalence ratio effect on the reaction is represented by the mixture fraction. A series of test simulations is performed for a two dimensional geometry, characterized by a distinctive stratified methane/air inlet, and compared with detailed chemistry simulations. The results indicate that detailed simulations are reproduced in an excellent way with FGM.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sunil Patil ◽  
Judy Cooper ◽  
Stefano Orsino ◽  
Joseph Meadows ◽  
Richard Valdes ◽  
...  

Numerical simulation results of a single-jet premixed combustion system at atmospheric pressure are compared against comprehensive particle image velocimetry (PIV) flow measurements and Raman scattering temperature measurements for natural gas and hydrogen fuels. The simulations were performed on hexahedral meshes with 1–5 × 106 elements. Reynolds-averaged Navier–Stokes (RANS) calculations were carried out with the k–ε realizable turbulence model. Combustion was modeled using the flamelet-generated manifold model (FGM) and detailed chemistry. Both the flame position and flame liftoff predicted by the FGM were in reasonable agreement with experiments for both fuels and showed little sensitivity to heat transfer or radiation modeling. The detailed chemistry calculation predicts the temperature gradients along the jet centerline accurately and compares very closely with the Raman scattering measurements. The much closer agreement of the jet axial velocity and temperature profiles with experimental values, coupled with the significantly protracted presence of intermediates in the detailed chemistry predictions, indicates that the impact of nonequilibrium intermediates on very lean natural gas flames is significant.


Author(s):  
XiaoHang Fang ◽  
Nikola Sekularac ◽  
Martin H. Davy

Abstract Conditional Source-term Estimation (CSE) is a combustion model based on the conditional moment hypothesis where transport equations for reactive species are conditionally averaged on conserved scalars. Major advantages of this strategy are the reduced spatial dependence of the conditional averages and negligible fluctuations around the conditional averages, which considerably simplify the reaction rate closure. Historically, simulations using CSE are limited to low carbon fuels (i.e. methane and hydrogen) where the reduced chemistry manifold can be constructed through techniques including intrinsic low dimensional manifolds and trajectory generated manifolds. However, the use of such strategies to create manifolds for diesel surrogates has proven problematic. In this study, the potential of a combination of an unsteady Flamelet Generated Manifold (FGM) and the Conditional Source-term Estimation approach to predict the ignition and flame propagation on an autoigniting n-dodecane spray flame is assessed. Simulations are performed on a single-hole injection of n-dodecane under a wide range of Engine Combustion Network’s “Spray A” conditions within a Reynolds-averaged Navier-Stokes (RANS) framework. Results from parametric sweeps of ambient temperature and oxygen concentration are qualitatively validated against experimental data from the literature and compared against predictions from an industry standard well-stirred reactor model. The efficacy of the CSE-FGM RANS approach in predicting flame characteristics is evaluated and further compared with high fidelity CSE-FGM simulations using the Large Eddy Simulation (LES) turbulence model. Overall, it was found that the CSE-FGM RANS model was able to capture global flame properties — showing particular strength in predicting auto-ignition events in the low temperature region. The model was also able to satisfactorily capture details of the two-stage ignition process. The results were shown to be consistent with those of the CSE-FGM LES model, demonstrating the adaptability of the CSE-FGM approach to different turbulence modelling paradigms.


Author(s):  
Piyush Thakre ◽  
Ivana Veljkovic ◽  
Vincent Lister ◽  
Graham Goldin

Abstract We present a robust, fast, and highly-automated Reactor Network model within a single simulation framework in Simcenter STAR-CCM+. An industrial gas turbine combustor operating at 3 bar is numerically investigated using the GRI 3.0 chemical mechanism. A baseline CFD solution with RANS and Flamelet Generated Manifold combustion model was used to create the network of reactors. A number of model variations have been investigated, such as the use of constant pressure vs. perfectly stirred reactors. Two options for the temperature solution are considered, namely temperature mapped from the CFD solution and temperature computed from an equation of state. Different numbers of reactors are investigated to understand the overall sensitivity on the key combustion results. It was found that with appropriate clustering variables, using a few thousand reactors provide a reasonable representation of the species fields. The simulation results are compared with the available experimental data for the combustor. The NOx and CO emissions predictions with the Reactor Network model perform better than the baseline CFD model. The Reactor Network model was about ∼3 orders of magnitude faster than a detailed chemistry CFD of the same combustor.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Hai-Wen Ge ◽  
Harmit Juneja ◽  
Yu Shi ◽  
Shiyou Yang ◽  
Rolf D. Reitz

An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.


Author(s):  
M. Wang ◽  
M. Raju ◽  
E. Pomraning ◽  
P. Kundu ◽  
Y. Pei ◽  
...  

Representative Interactive Flamelet (RIF) and Detailed Chemistry based combustion models are two commonly used combustion models for non-premixed diesel engine simulations. RIF performs transient chemistry calculations on a one-dimensional grid based on the mixture fraction coordinate. Hence, the chemistry calculations are essentially decoupled from the computational fluid dynamics (CFD) grid. The detailed chemistry model, on the other hand, solves transient chemistry in the 3D CFD domain. An efficient parallelization strategy is used for the computation of the multiple flamelets RIF model. The multiple flamelets RIF and detailed chemistry combustion models are applied for modeling a constant volume spray combustion case and a diesel engine case, with a view to compare the differences between the two models. Results for ignition delay, flame lift-off length, cylinder pressure, and emissions are compared with experimental data. The effect of number of flamelets is evaluated. Finally, the effect of spray cooling is investigated based on the results from the RIF model and the detailed chemistry based combustion model.


Author(s):  
Baifang Zuo ◽  
David L. Black ◽  
Clifford E. Smith

The effect of turbulence on chemical reactions is known to be important in many gas turbine combustor applications. There are only a few established models that can capture turbulence-combustion interaction in CFD codes, and all of these models are either very expensive (e.g. Monte Carlo PDF model) or limited in what types of flames can be analyzed (e.g. laminar flamelet). Assumed PDF models have been a popular choice because they are inexpensive and can handle all flame types (e.g. diffusion, premixed and partially premixed). However, assumed PDF models are typically restricted to single, one-step global mechanisms; or are a function of species and quickly become computationally expensive. CFD Research Corporation has recently developed and validated a new assumed PDF turbulence chemistry interaction model for multi-step chemistry. The model adopts an assumed, two-variable joint-PDF to model a wide-range of turbulent reacting flows. The two variables defining the PDF are the mixture fraction and reaction progress, representing species diffusion and flame propagation. A significant advantage of this new approach is its wide range of applicability for premixed, diffusion, and partially premixed flames. Allowing more detailed chemistry for species and combustion predictions enables complex chemical reaction processes including pollutant formation, flame ignition, and flame quenching to be studied. The model is also computationally efficient, with only a minor increase in computational expense with either species or number of global reaction steps. The newly developed model was first validated using a diffusion flame from a piloted burner developed at the University of Sydney. Three different methane bulk jet velocities were used to investigate the model’s behavior on turbulent diffusion flames. Simulation data were compared with the experimental measurements and the simulation results performed by Pope (Masri and Pope, 1990) using a velocity-composition joint PDF transport equation solved by the Monte Carlo method. To validate the model on premixed flames, the data of Moreau et al. (Moreau et al., 1974, 1976, 1977) were used. Data were collected on a mixing layer stabilized burner, where the main flow into the combustor was a premixed mixture of methane and air. Parallel to the main stream, a pilot stream of hot combustion products at 2000 K was injected for flame stabilization. The results demonstrate the wide applicability of the new model for practical, turbulent combustion applications.


2013 ◽  
Vol 871 ◽  
pp. 95-100
Author(s):  
Elwina ◽  
Yunardi ◽  
Yazid Bindar ◽  
Syukran

This paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with air preheat. The study focuses on investigating the effect of air preheat temperature on the temperature of the flame. A standard k-ε turbulence model in combination with the Probability Density Function (PDF) model for Non Premix Combustion model and Eddy Dissipation Model (EDM) are utilized to represent the flow and temperature fields of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study showed that the combination of the standard k-ε turbulence model and PDF model is more capable of producing reasonable predictions of temperature, particularly in axial profile and rich fuel area of all two flames compared with those of EDM model. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.


2015 ◽  
Vol 162 (3) ◽  
pp. 19-33
Author(s):  
Rafał Pyszczek ◽  
Carsten Schmalhorst ◽  
Andrzej Teodorczyk

The aim of this study was to determine possibilities of the soot and NOx emissions reduction from an existing heavy-duty compression-ignition (CI) engine based only on in-cylinder techniques. To that end numerical simulations of such processes as a multiphase fuel flow through injector nozzles, a liquid fuel jet breakup and evaporation, combustion and emissions formation were performed in AVL Fire 3D CFD software. The combustion process was calculated with the ECFM-3Z model and with the detailed n-heptane oxidation scheme that consisted of 76 species and 349 reactions. Both approaches of combustion modeling were validated against experimental data from the existing engine working under 75% and 100% loads. As for the reduction of the NOx emission an introduction of exhaust gas recirculation (EGR) was investigated. As for the soot concentration reduction such measures as an increased rail pressure, application of a post-injection and an increased injector nozzles conicity were investigated. Finally the ECFM-3Z model with emissions models, as well as the n-heptane mechanism predicted that it is possible to reach specified emissions limits with application of EGR, post-injection and increased nozzles conicity.


Author(s):  
Sunil Patil ◽  
Judy Cooper ◽  
Stefano Orsino ◽  
Joseph Meadows ◽  
Richard Valdes ◽  
...  

Numerical simulation results of a single jet premixed combustion system at atmospheric pressure are compared against comprehensive particle image velocimetry (PIV) flow measurements and Raman scattering temperature measurements for natural gas and hydrogen fuels. The simulations were performed on hexahedral meshes with 1–5 million elements. RANS calculations were carried with the k-ε realizable turbulence model. Combustion was modeled using the Flamelet Generated Manifold model (FGM) and detailed chemistry. Both the flame position and flame liftoff predicted by the FGM were in reasonable agreement with experiments for both fuels and showed little sensitivity to heat transfer or radiation modeling. The detailed chemistry calculation predicts the temperature gradients along the jet centerline accurately and compares very closely with the Raman scattering measurements. The much closer agreement of the jet axial velocity and temperature profiles with experimental values, coupled with the significantly protracted presence of intermediates in the detailed chemistry predictions, indicates that the impact of nonequilibrium intermediates on very lean natural gas flames is significant.


Sign in / Sign up

Export Citation Format

Share Document