Effect of Inlet Air Refrigeration on the Performance of Combined Cycle Power Plants

Author(s):  
G. Srivastava ◽  
R. Yadav

In the present work an attempt has been made to study the effect of inlet air refrigeration on the performance of combined cycle power plants. The inlet air cooling for the chosen combined cycle configuration may be done by means of employing a refrigeration system such as vapor compression and vapor absorption system, which derive the energy input from the system itself. In the vapor absorption system, the input energy to generator is given by three possible heat source from the system namely from the gas turbine exhaust, steam bled from steam turbine and exhaust gas from the exit of heat recovery steam generator (HRSG). It has been observed that the vapor absorption system with HRSG exhaust as heat source to the generator is the better option followed by the vapor compression refrigeration system for compressor inlet air cooling. The cooled compressed inlet air up to 280K from 300K improves the plant specific work around 4% and plant efficiency around 0.39 percentage point for the combined cycle using vapor compression system.

Author(s):  
R. Yadav ◽  
Somnath Bhattacharya

In this work, the effects of inlet air cooling by vapor compression refrigeration cycle and evaporative water-cooling system, the cooling of blade coolant air by fuel before entering the combustor and recuperation on the combined cycle power plant performance have been studied. The present results show substantial improvements in the value of specific work and plant efficiency in the presence of cooling of inlet air and blade coolant air compared to a system without such cooling effects. However, implementation of recuperation alone reduces plant efficiency and specific work but recuperation combined with cooling effects increases plant efficiency. Design engineers might find presented results useful in optimizing a combined cycle system.


Author(s):  
Edzel Jair Casados-López ◽  
Raúl Cruz-Vicencio ◽  
Álvaro Casados-Sánchez ◽  
Álvaro Horst-Sánche

In this article, a combined cycle power station (gas-steam) is analyzed, considering air cooling before entering the compressor. Currently what is sought are higher thermal efficiencies, which is why the combined cycle power plants have been chosen, since they make better use of the fuel, producing greater net power, all of which have led to innovative modifications in the combined cycle power plants, improving the performance of this. In this research work, a 243 MW combined cycle plant is taken as the base, whose air temperature when entering the compressor is 32 ° C. Knowing in advance that one of the factors that affects the operation of this plant is the condition of the air when entering the compressor, which when it cools will increase its density and with it its mass flow, obtaining an increase in the power of the gas turbine. In view of this, this work proposes that through the use of a mechanical refrigeration system, air cooling to 15 °C is carried out at the compressor inlet and with this achieve an increase in plant performance.


2015 ◽  
Vol 76 ◽  
pp. 449-461 ◽  
Author(s):  
Mehdi A. Ehyaei ◽  
Mojtaba Tahani ◽  
Pouria Ahmadi ◽  
Mohammad Esfandiari

Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


2010 ◽  
Vol 132 (12) ◽  
pp. 57-57
Author(s):  
Lee S. Langston

This article presents an overview of gas turbine combined cycle (CCGT) power plants. Modern CCGT power plants are producing electric power as high as half a gigawatt with thermal efficiencies approaching the 60% mark. In a CCGT power plant, the gas turbine is the key player, driving an electrical generator. Heat from the hot gas turbine exhaust is recovered in a heat recovery steam generator, to generate steam, which drives a steam turbine to generate more electrical power. Thus, it is a combined power plant burning one unit of fuel to supply two sources of electrical power. Most of these CCGT plants burn natural gas, which has the lowest carbon content of any other hydrocarbon fuel. Their near 60% thermal efficiencies lower fuel costs by almost half compared to other gas-fired power plants. Their installed capital cost is the lowest in the electric power industry. Moreover, environmental permits, necessary for new plant construction, are much easier to obtain for CCGT power plants.


Author(s):  
Isaac Shnaid

The modem combined cycle power plants achieved thermal efficiency of 50–55% by applying bottoming multistage Rankine steam cycle. At the same time, the Brayton cycle is an attractive option for a bottoming cycle engine. In the author’s US Patent No. 5,442,904 is described a combined cycle system with a simple cycle gas turbine, the bottoming air turbine Brayton cycle, and the reverse Brayton cycle. In this system, air turbine Brayton cycle produces mechanic power using exergy of gas turbine exhaust gases, while the reverse Brayton cycle refrigerates gas turbine inlet air. Using this system, supercharging of gas turbine compressor becomes possible. In the paper, thermodynamic optimization of the system is done, and the system techno-economic characteristics are evaluated.


Author(s):  
John T. Langaker ◽  
Christopher Hamker ◽  
Ralph Wyndrum

Large natural gas fired combined cycle electric power plants, while being an increasingly efficient and cost effective technology, are traditionally large consumers of water resources, while also discharging cooling tower blowdown at a similar rate. Water use is mostly attributed to the heat rejection needs of the gas turbine generator, the steam turbine generator, and the steam cycle condenser. Cooling with air, i.e. dry cooling, instead of water can virtually eliminate the environmental impact associated with water usage. Commissioned in the fall of 2010 with this in mind, the Halton Hills Generating Station located in the Greater Toronto West Area, Ontario, Canada, is a nominally-rated 700 Megawatt combined cycle electric generating station that is 100 percent cooled using various air-cooled heat exchangers. The resulting water consumption and wastewater discharge of this power plant is significantly less than comparably sized electric generating plants that derive cooling from wet methods (i.e, evaporative cooling towers). To incorporate dry cooling into such a power plant, it is necessary to consider several factors that play important roles both during plant design as well as construction and commissioning of the plant equipment, including the dry cooling systems. From the beginning a power plant general arrangement and space must account for dry cooling’s increase plot area requirements; constraints therein may render air cooling an impossible solution. Second, air cooling dictates specific parameters of major and auxiliary equipment operation that must be understood and coordinated upon purchase of such equipment. Until recently traditional wet cooling has driven standard designs, which now, in light of dry cooling’s increase in use, must be re-evaluated in full prior to purchase. Lastly, the construction and commissioning of air-cooling plant equipment is a significant effort which demands good planning and execution.


Author(s):  
A. Hofstädter ◽  
H. U. Frutschi ◽  
H. Haselbacher

Steam injection is a well-known principle for increasing gas turbine efficiency by taking advantage of the relatively high gas turbine exhaust temperatures. Unfortunately, performance is not sufficiently improved compared with alternative bottoming cycles. However, previously investigated supplements to the STIG-principle — such as sequential combustion and consideration of a back pressure steam turbine — led to a remarkable increase in efficiency. The cycle presented in this paper includes a further improvement: The steam, which exits from the back pressure steam turbine at a rather low temperature, is no longer led directly into the combustion chamber. Instead, it reenters the boiler to be further superheated. This modification yields additional improvement of the thermal efficiency due to a significant reduction of fuel consumption. Taking into account the simpler design compared with combined-cycle power plants, the described type of an advanced STIG-cycle (A-STIG) could represent an interesting alternative regarding peak and medium load power plants.


Sign in / Sign up

Export Citation Format

Share Document