Model to Estimate Mass Emissions of Atmospheric Pollutants in Thermal Power Plants

Author(s):  
Jose´ I. Huertas ◽  
Mauricio Y. Carmona ◽  
Diego Moreno

Currently there is a need for a model to estimate mass emissions of atmospheric pollutants at the exit of the stacks of thermal power plants that operate under a variable regime of electric power generation based on the variables that typically are monitored during the operation of the plants. The recommended alternative to calculate the mass emissions of pollutants is based on the experimental measurements of pollutant concentration, velocity and temperature at the exit of the stack. This alternative is expensive and cumbersome to implement. Alternatively the US EPA emission factors can be used. However, the emission factors require modifications to account for the type of fuel, the technology used to control emissions, maintenance of the equipment, and the local environmental conditions. As a solution, this paper presents a model to estimate emissions of atmospheric pollutants in thermal power plants based on the variables that are continuously monitored during the operation of most of the thermal power plants in Mexico such as fuel chemical composition, fuel consumption, air to fuel ratio of the combustion process, and mean boiler temperature. The proposed model was calibrated by continuously measuring all the variables included in the three models during one week of operation of a 2.2 GW thermal power plant located in the continental area of the Gulf of Mexico. This plant has six units of generation that operate with fuel oil and one with natural gas. Results obtained from the three methodologies described before were compared. It was concluded that the NOx, SOx and CO results of the proposed model follow closely the results obtained using the measurements of concentration, velocity and temperature at the exit of the stack method. It was also found that the results of the emission factors methodology require to be adjusted to include the particular operating conditions of each unit of electricity generation.

2018 ◽  
Vol 10 (10) ◽  
pp. 3448 ◽  
Author(s):  
Changsang Cho ◽  
Seongmin Kang ◽  
Minwook Kim ◽  
Yoonjung Hong ◽  
Eui-chan Jeon

Thermal power plants are a large source of greenhouse gas emissions among energy industry facilities. Emission factors for methane and nitrous oxide depend on combustion technologies and operating conditions and vary significantly with individual thermal power plants. Due to this variability, use of average emission factors for these gases will introduce relatively large uncertainties. This study determined the CH4 emission factors of thermal power plants currently in operation in Korea by conducting field investigations according to fuel type and type of combustion technique. Through use of the Monte Carlo simulation, the uncertainty range for the CH4 emission factor was determined. The estimation showed, at the 95% confidence level, that the uncertainty range for CH4 emission factor from a tangential firing boiler using bituminous coal was −46.6% to +145.2%. The range for the opposed wall-firing boiler was −25.3% to +70.9%. The range for the tangential firing boiler using fuel oil was −39.0% to 93.5%, that from the opposed wall-firing boiler was −47.7% to +201.1%, and that from the internal combustion engine boiler was −38.7% to +106.1%. Finally, the uncertainty range for the CH4 emission factor from the combined cycle boiler using LNG was −90% to +326%.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Milana Treshcheva ◽  
Irina Anikina ◽  
Vitaly Sergeev ◽  
Sergey Skulkin ◽  
Dmitry Treshchev

The percentage of heat pumps used in thermal power plants (TPPs) in the fuel and energy balance is extremely low in in most countries. One of the reasons for this is the lack of a systematic approach to selecting and justifying the circuit solutions and equipment capacity. This article aims to develop a new method of calculating the maximum capacity of heat pumps. The method proposed in the article has elements of marginal analysis. It takes into account the limitation of heat pump capacity by break-even operation at electric power market (compensation of fuel expenses, connected with electric power production). In this case, the heat pump’s maximum allowable capacity depends on the electric capacity of TPP, electricity consumption for own needs, specific consumption of conditional fuel for electricity production, a ratio of prices for energy resources, and a conversion factor of heat pump. For TPP based on combined cycle gas turbine (CCGT) CCGT-450 with prices at the Russian energy resources markets at the level of 2019, when operating with the maximum heat load, the allowable heat pump capacity will be about 50 MW, and when operating with the minimum heat load—about 200 MW.


2019 ◽  
Vol 9 (9) ◽  
pp. 1964 ◽  
Author(s):  
Dinh-Hieu Vu ◽  
Hoang-Bac Bui ◽  
Bahareh Kalantar ◽  
Xuan-Nam Bui ◽  
Dinh-An Nguyen ◽  
...  

Coal-fired power stations are one of the primary sources of power generation in the world. This will produce considerable amounts of fly ash from these power stations each year. To highlight the potential environmental hazards of these materials, this study is carried out to evaluate the characterization of fly ashes produced in thermal power plants in northern Vietnam. Fly ash was firstly fractionated according to size, and the fractions were characterized. Then, each of these fractions was analyzed with regard to their mineralogical features, morphological and physicochemical properties. The analytical results indicate a striking difference in terms of the characteristics of particles. It was found that magnetic fractions are composed of magnetite hematite and, to a lower rate, mullite, and quartz. Chemical analyses indicate that the non-magnetic components mainly consist of quartz and mullite as their primary mineral phases. As the main conclusion of this research, it is found that the magnetic and non-magnetic components differ in terms of shape, carbon content and mineralogical composition. In addition, it was found that magnetic components can be characterized as more spheroidal components compared to non-magnetic ones. This comprehensive characterization not only offers a certain guideline regarding the uses of different ash fractions but it will also provide valuable information on this common combustion process.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


2016 ◽  
Vol 92 ◽  
pp. 01038
Author(s):  
Arkadiy V. Zakharevich ◽  
Dmitriy N. Tsymbalov

2016 ◽  
Vol 10 (10) ◽  
pp. 1-12
Author(s):  
Roshdy AbdelRassoul ◽  
S. IEEE ◽  
Mohamed Zaghloul ◽  
Mohamed Omar ◽  
Islam El Adly

Sign in / Sign up

Export Citation Format

Share Document