Computations for Unsteady Compressible Flows in a Multi-Stage Steam Turbine With Steam Properties at Low Load Operations

Author(s):  
Shigeki Senoo ◽  
Kiyoshi Segawa ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

A computational technique for compressive fluid in multistage steam turbines which can allow for thermodynamic properties of steam is presented. The understanding and prediction of flow field not only at design conditions but also at off-design conditions are important for realizing high-performance and high-reliability steam turbines. Computational fluid dynamics is useful for estimations of flows. However, current three-dimensional multi-stage calculations for unsteady flows have two main problems. One is the long computation time and the other is how to include the thermodynamic properties of steam. Properties of the ideal gas, such as equations of state and enthalpy formula, are assumed in most computational techniques for compressible flows. In order to shorten the computation time, a quasi-three-dimensional flow calculation technique is developed. In the analysis, system equations of conservation laws for compressible fluid in axisymmetric cylindrical coordinates are solved by using a finite volume method based on an approximate Riemann solver. Blade forces are calculated from the camber and lean angles of blades using momentum equations. The axisymmetric assumption and the blade force model enable the effective calculation for multi-stage flows, even when the flow is strongly unsteady under off-design conditions. In order to take into account steam properties including effects of the gas-liquid phase change and two-phase flow, a flux-splitting procedure of compressible flow is generalized for real fluid. Density and internal energy per unit volume are selected as independent thermodynamic variables. Pressure and temperature in a superheated region or wetness mass fraction in a wet region are calculated by using a steam table. To improve computational efficiency, a discretized steam table matrix is made in which the density and specific internal energy are independent variables. For accuracy and continuity of steam properties, the second order Taylor expansion and linear interpolation are introduced. The computed results of last four-stage low-pressure steam turbine at low load conditions show that there is a reverse flow near the hub region of the last (fourth stage bucket and the flow concentrates in the tip region due to the centrifugal force. At a very low load condition, the reverse flow region extends to the former (i.e. the first to third) stages and the unsteadiness of flow gets larger due to many vortices. Four-stage low pressure steam turbine tests are also carried out at low load or even zero load. The radial distributions of flow direction downstream from each stage are measured by traversing pneumatic probes. Additionally pressure transducers are installed in the side wall to measure the unsteady pressure. The regions of reverse flow are compared between computations and experiments at different load conditions, and their agreement is good. Further, the computation can follow the trends of standard deviation of unsteady pressure on the wall to volumetric flow rate of experiments. The validity of the analysis method is verified.

Author(s):  
Shigeki Senoo ◽  
Kiyoshi Segawa ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

A computational technique for multistage steam turbines, which can allow for thermodynamic properties of steam, is presented. Conventional three-dimensional multistage calculations for unsteady flows have two main problems. One is the long computation time and the other is how to include the thermodynamic properties of steam. Ideal gas is assumed in most computational techniques for compressible flows. To shorten the computational time, a quasi-three-dimensional flow calculation technique is developed. In the analysis, conservation laws for compressible fluid in axisymmetric cylindrical coordinates are solved using a finite volume method based on an approximate Riemann solver. Blade forces are calculated from the camber and lean angles of blades with momentum equations. The axisymmetric assumption and the blade force model enable the effective calculation for multistage flows, even when the flow is strongly unsteady under off-design conditions. To take into account steam properties including effects of the gas-liquid phase change and two-phase flow, a flux-splitting procedure of compressible flow is generalized for real fluid. Density and internal energy per unit volume are selected as independent thermodynamic variables. Pressure and temperature in a superheated region or wetness mass fraction in a wet region are calculated by using a steam table. To improve computational efficiency, a discretized steam table matrix is made in which the density and specific internal energy are independent variables. For accuracy and continuity of steam properties, the second order Taylor expansion and linear interpolation are introduced. The computed results of the last four-stage low-pressure steam turbine at low load conditions show that there is a reverse flow near the hub region of the last stage bucket and the flow concentrates in the tip region due to the centrifugal force. At a very low load condition, the reverse flow region extends to the former stages and the unsteadiness of flow gets larger due to many vortices. Four-stage low-pressure steam turbine tests are also carried out at low load. The radial distributions of flow direction downstream from each stage are measured by traversing pneumatic probes. Additionally, pressure transducers are installed in the side wall to measure unsteady pressure. The regions of reverse flow are compared between computations and experiments at different load conditions, and their agreement is good. Further, the computation can follow the trends of standard deviation of unsteady pressure on the wall to volumetric flow rate of experiments.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


Author(s):  
Kiyoshi Segawa ◽  
Shigeki Senoo ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

Four-stage low pressure model steam turbine tests are carried out under the low load conditions of 0% to 20% load. In such low load conditions, the reverse flow is generated from turbine exit. Steady pressure measurements using multi-hole pneumatic probes are made to specify the outer boundary of the reverse flow region. The reverse flow regions are determined from the flow angles measured by the multi-hole pneumatic probes, traversing in the radial direction which rotates 360 deg around the longitudinal axis. The outer boundary of the reverse flow regions varies depending on turbine loads and has good agreement with the results of the numerical analyses. The pressure fluctuations are measured using unsteady pressure transducers installed on both the inner and outer side walls of the outlet stage and on the next-stage stationary blade surfaces to investigate the relation between pressure fluctuation and volumetric flow. It is found that the pressure fluctuations, which are defined by the standard deviation of unsteady pressure, become larger with decreased volumetric flow at the outer side as well as the inner side which is the same as the tendency seen for blade dynamic stress characteristics. The authors have previously reported good agreement between the experimental and numerical results. The unsteady pressure probe as another measurement technique is employed to investigate the spanwise pressure fluctuations at the outlet of the moving blade. The results show that as the load decreases, large pressure fluctuations are observed in the vicinity of the outer side after the stages where the reverse flow is observed. This is the same tendency as the results of wall pressure measurements. The generation of large pressure fluctuations, detected by the two different measurement techniques, might have a relationship with the effects of not only the vortex motion in the reverse flow region but also the overall flow field (including main forward flow) oscillated by the multiple vortex motions in the reverse flow region as seen in both experiments and computations. The large pressure fluctuations in the vicinity of the outer side after the blade lead to the increase of exciting force and vibration stress on moving blades. Detailed aerodynamic investigations of these part-load conditions are needed to analyze a blade excitation for further improvement of reliability and availability of steam turbines. The complicated flow structures at low load conditions in a steam turbine can be understood with the aid of both the steady and unsteady flow measurements and calculations.


Author(s):  
Can Ma ◽  
Jun Wu ◽  
Yuansheng Lin

In the nuclear power plant, the last stage of the low pressure steam turbine is characterized by long blades. These long blades operate under severe working conditions with wet steam flow and strong mechanical stress. At the start up and shut down operating condition where the volume flow is extremely low, the last stage blades operate in ventilation conditions where there is significant reverse flow in the exhaust and the last stage. In such a condition, the reverse flow would cause significant increase in the blade temperature. In addition, the rotating reverse flow would increase the vibration of the rotor blade. Such temperature increase and enhanced vibration can cause blade damage and force the machine to be shut down. In previous work, the steam injection in the last stage has been proposed as a promising method to decrease the reverse flow at low volume flow conditions, which reduces the stall cell size in the last stage blade. This work investigates the effect of the steam injection process on the blade temperature distribution by conducting three-dimensional flow simulations. Various steam injection configurations are compared in this work and the major consideration to be noted in the design process is discussed.


Author(s):  
Juri Bellucci ◽  
Lorenzo Peruzzi ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
Nicola Maceli

Abstract This work aims to deepen the understanding of the aerodynamic behavior and the performance of a low pressure steam turbine module. Numerical and experimental results obtained on a three-stage low pressure steam turbine (LPT) module are presented. The selected geometry is representative of the state-of-the-art of low pressure sections for small steam turbines. The test vehicle was designed and operated in different operating conditions with dry and wet steam. Different types of measurements are performed for the global performance estimation of the whole turbine and for the detailed analysis of the flow field. Steady and unsteady CFD analyses have been performed by means of viscous, three-dimensional simulations adopting a real gas, equilibrium steam model. Measured inlet/outlet boundary conditions are used for the computations. The fidelity of the computational setup is proven by comparing computational and experimental results. Main performance curves and span-wise distributions show a good agreement in terms of both shape of curves/distributions and absolute values. Finally, an attempt is done to point out where losses are generated and the physical mechanisms involved are investigated and discussed in details.


Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


Author(s):  
Bowen Ding ◽  
Liping Xu ◽  
Jiandao Yang ◽  
Rui Yang ◽  
Yuejin Dai

Modern large steam turbines for power generation are required to operate much more flexibly than ever before, due to the increasing use of intermittent renewable energy sources such as solar and wind. This has posed great challenges to the design of LP steam turbine exhaust systems, which are critical to recovering the leaving energy that is otherwise lost. In previous studies, the design had been focused on the exhaust diffuser with or without the collector. Although the interaction between the last stage and the exhaust hood has been identified for a long time, little attention has been paid to the last stage blading in the exhaust system’s design process, when the machine frequently operates at part-load conditions. This study focuses on the design of LP exhaust systems considering both the last stage and the exhaust diffuser, over a wide operating range. A 1/10th scale air test rig was built to validate the CFD tool for flow conditions representative of an actual machine at part-load conditions, characterised by highly swirling flows entering the diffuser. A numerical parametric study was performed to investigate the effect of both the diffuser geometry variation and restaggering the last stage rotor blades. Restaggering the rotor blades was found to be an effective way to control the level of leaving energy, as well as the flow conditions at the diffuser inlet, which influence the diffuser’s capability to recover the leaving energy. The benefits from diffuser resizing and rotor blade restaggering were shown to be relatively independent of each other, which suggests the two components can be designed separately. Last, the potentials of performance improvement by considering both the last stage rotor restaggering and the diffuser resizing were demonstrated by an exemplary design, which predicted an increase in the last stage power output of at least 1.5% for a typical 1000MW plant that mostly operates at part-load conditions.


Sign in / Sign up

Export Citation Format

Share Document