Thermodynamic Analysis of an Integrated Solar-Based Cooling System in UAE

Author(s):  
Mohamed Gadalla ◽  
Amani Al Hammadi

Renewable energy resource is considered by many developed and developing countries as a promising and a cost effective candidate to provide energy. The operation of cooling systems in the United Arab Emirates (UAE) have some operating problems especially in summer such as severe grid dependent, excessive energy consumption, high emissions and high costs. So, more economically and environmentally friendly HVAC systems are desired to provide the required electricity demands for cooling loads while saving energy and having low emissions to the environment. In this paper, a parabolic trough solar collector is integrated with a triple effect absorption cooling system for sustainable development. A computer code is developed using Engineering Equation Solver (EES) software to obtain all required thermodynamic properties of water-lithium bromide (H2O/LiBr) solution and to optimize all operating parameters and carry out all detailed energy and exergy analyses for a 10 kW cooling capacity. In addition, the parabolic trough solar collector (PTSC) is also designed for the required cooling load and its overall dynamic behavior is also investigated. The solar irradiance available in the UAE on a monthly basis is used in the analysis of a PTSC-based HVAC cooling system. Energetic and exergetic efficiencies of the PTSC for every month are also evaluated under different operating conditions. The Overall monthly energy and exergy efficiencies of the integrated PTSC-based HVAC system for a constant mass flow rate of Therminol-66 and concentration ratio are calculated. The dynamic variation of the coefficient of performance of the integrated system with the solar irradiance and mass flow rate of the oil are also evaluated. Results show that both energetic and exergetic COPs are decreased with increasing the solar irradiance for a constant mass flow rate of oil and constant concentration ratio. It is found that increasing the mass flow rate of the oil from 0.1 to 0.5 kg/s results in decreasing the energetic COP from 2.15 to 1.98 and the exergetic COP from 2.05 to 1.93.

2020 ◽  
Vol 13 (3) ◽  
pp. 206-221
Author(s):  
Vijayan Gopalsamy ◽  
Karunakaran Rajasekaran ◽  
Logesh Kamaraj ◽  
Siva Sivasaravanan ◽  
Metin Kok

Background: Aqueous-alumina nanofluid was prepared using magnetic stirrer and ultrasonication process. Then, the prepared nanofluid was subjected to flow through the unshielded receiver of the parabolic trough solar collector to investigate the performance of the nanofluid and the effects of the dimensionless parameter were determined. Methods: The experimental work has been divided into two sections. First, the nanofluid was prepared and tested for its morphology, dimensions, and sedimentation using X-Ray Diffraction and Raman shift method. Then, the nanofluids of various concentrations from 0 to 4.0% are used as heat transfer fluid in unshielded type collector. Finally, the effect of the dimensionless parameter on the performance was determined. Results: For the whole test period, depending upon the bulk mean temperature, the dimensionless parameters such as Re and Nu varied from 1098 to 4552 & 19.30 to 46.40 for air and 2150 to 7551 & 11.11 to 48.54 for nanofluid. The enhancement of thermal efficiency found for 0% and 4.0% nanoparticle concentrations was 32.84% for the mass flow rate of 0.02 kg/s and 13.26% for the mass flow rate of 0.06 kg/s. Conclusion: Re and Nu of air depend on air velocity and ambient temperature. Re increased with the mass flow rate and decreased with concentration. Heat loss occurred by convection mode of heat transfer. Heat transfer coefficient and global efficiency increased with increased mass flow rate and volume fraction. The thermal efficiency of both 0% and 4.0% concentrations became equal for increased mass flow rate. It has been proven that at high mass flow rates, the time available to absorb the heat energy from the receiver is insufficient.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Shahram Derakhshan ◽  
Mohammadreza Khosravian

In this paper, a parabolic trough solar collector (PTSC) plant is combined with a liquid air energy storage (LAES) system. The genetic algorithm (GA) is used to optimize the proposed system for different air storage mass flow rates. The roundtrip exergy ratio is considered as the objective function and pressures of six points and mass flow rates of five points are considered as design parameters. The effects of some environmental and key parameters such as different radiation intensities, ambient temperatures, output pressures of the second compressor, and mass flow rates of the collectors fluid on the exergy ratio are investigated. The results revealed that the system could produce 17526.15 kJ/s (17.5 MW) power in high demands time and 2233.48 kJ/s (2.2 MW) power in low demands time and the system shows that a value of 15.13% round trip exergy ratio is achievable. Furthermore, the exergy ratio decreased by 5.1% when the air storage mass flow rate increased from 10 to 15 kg/s. Furthermore, the exergy ratio decreases by increasing the collectors inside fluid mass flow rate or by decreasing radiation intensity.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Su Guo ◽  
Yinghao Chu ◽  
Deyou Liu ◽  
Xingying Chen ◽  
Chang Xu ◽  
...  

Compared with recirculation and injection modes, once-through direct steam generation (DSG) parabolic troughs are simpler to construct and require the lowest investment. However, the heat transfer fluid (HTF) in once-through DSG parabolic trough systems has the most complicated dynamic behavior, particularly during periods of moving shadows caused by small clouds and jet contrails. In this paper, a nonlinear distributed parameter dynamic model (NDPDM) is proposed to model the dynamic behavior of once-through DSG parabolic trough solar collector row under moving shadow conditions. Compared with state-of-the-art models, the proposed NDPDM possesses three characteristics: (a) adopting real-time local values of the heat transfer and friction resistance coefficients, (b) simulating the whole collector row, including the boiler and the superheated sections, and (c) modeling the disturbance of direct normal irradiance (DNI) level on DSG parabolic trough solar collector row under moving shadow conditions. Validated using experimental data, the NDPDM accurately predicts the dynamic characteristics of HTF during periods of partial and moving DNI disturbance. The fundamental and specific dynamic process of fluid parameters for a DSG parabolic trough solar collector row is provided in this paper. The results show the following: (a) Moving shadows have a significant impact on the outlet temperature and mass flow rate, and the impact lasts up to 1000 s even after the shadows completely leave the collector row. (b) The time for outlet steam temperature to reach a steady-state value for the first time is independent of the shadow width, speed, and moving direction. (c) High-frequency chattering of the outlet mass flow rate can be observed under moving DNI disturbance and will have a longer duration if the shadow width is larger or the shadow speed is slower. Compared with cases in which the whole system is shaded, partially shading cases have shown a longer duration of high-frequency chattering. (d) Both wider widths and slower speeds of shadow will cause a larger amplitude of responses in the outlet temperature and mass flow rate. When the shadow speed is low, there is a longer delay time of response in the mass flow rate of the outlet fluid. (e) The amplitude of response in the outlet temperature does not depend on the direction of clouds movement. However, if the DNI disturbance starts at the inlet of the collector row, there will be significant delay times in both outlet temperature and mass flow rate, and a larger amplitude of response in outlet mass flow rate.


Author(s):  
Ernesto ENCISO-CONTRERAS ◽  
Alejo Jesús DE LA CRUZ ◽  
Guillermo Irving ALCOCER ◽  
Juan Gabriel BARBOSA-SALDAÑA

This work describes the use of a computational tool to assess a previously built parabolic trough solar collector (PTC) that uses a working fluid in liquid state. This work is focused on the thermal analysis of a PTC collector considering two common used synthetic oils: Syltherm 800 and Therminol VP1. The designing characteristics of the commercial LS3 solar collector was selected and as solar resource, the solar irradiance that reaches Mexico City was used with twelve monthly average values along the year. The computational tool provides thermal and flow data for every synthetic oil and for every solar irradiance value used. The most important data computed is the mass flow, which is obtained through iterative processes until the necessary value is found, in order to satisfy the working fluid final temperature for the synthetic oil, once the optimum mass flow value is found, the collector thermal parameters are computed, such as: heat gain, heat losses, thermal efficiency, and the temperatures for the absorber and coating tubes. The computational tool can assess any PTC collector with any working fluid in liquid state, and the data obtained can be used to improve of modify the design of the collector for a better performance.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3503
Author(s):  
Huang ◽  
Chen ◽  
Yang ◽  
Du ◽  
Yang

Adverse wind effects on the thermo-flow performances of air-cooled condensers (ACCs) can be effectively restrained by wind-proof devices, such as air deflectors. Based on a 2 × 300 MW coal-fired power generation unit, two types (plane and arc) of air deflectors were installed beneath the peripheral fans to improve the ACC’s cooling performance. With and without air deflectors, the air velocity, temperature, and pressure fields near the ACCs were simulated and analyzed in various windy conditions. The total air mass flow rate and unit back pressure were calculated and compared. The results show that, with the guidance of deflectors, reverse flows are obviously suppressed in the upwind condenser cells under windy conditions, which is conducive to an increased mass flow rate and heat dissipation and, subsequently, introduces a favorable thermo-flow performance of the cooling system. When the wind speed increases, the leading flow effect of the air deflectors improves, and improvements in the ACC’s performance in the wind directions of 45° and –45° are more satisfactory. However, hot plume recirculation may impede performance when the wind direction is 0°. For all cases, air deflectors in an arc shape are recommended to restrain the disadvantageous wind effects.


2020 ◽  
Vol 14 (4) ◽  
pp. 480-487
Author(s):  
Vedran Mrzljak ◽  
Sandi Baressi Šegota ◽  
Hrvoje Meštrić ◽  
Zlatan Car

The paper presents an analysis of two steam turbine operation regimes - regime with all steam extractions opened (base process) and regime with all steam extractions closed. Closing of all steam extractions significantly increases turbine real developed power for 5215.88 kW and increases turbine energy and exergy losses with simultaneous decrease of turbine energy and exergy efficiencies for more than 2%. First extracted steam mass flow rate has a dominant influence on turbine power losses (in comparison to turbine maximum power when all of steam extractions are closed). Cumulative power losses caused by steam mass flow rate extractions are the highest in the fourth turbine segment and equal to 1687.82 kW.


Sign in / Sign up

Export Citation Format

Share Document