Yield Pressure Measurements and Analysis for Autofrettaged Cannons

Author(s):  
John H. Underwood ◽  
David B. Moak ◽  
Michael A. Audino ◽  
Anthony P. Parker

Yield pressure corresponding to a small permanent OD strain was measured in quasi-static laboratory tests of autofrettaged ASTM A723 steel cannon pressure vessels. Yield pressure was found to be a consistent ratio of the yield strength measured from specimens located in close proximity to the area of observed yielding. Yield pressure measurements for dynamic cannon firing with typically a 5 ms pressure pulse duration gave 14% higher yield pressures, attributed to strain rate effects on plastic deformation. Calculated Von Mises yield pressure for the laboratory test conditions, including the Bauschinger-modified ID residual stress and open-end vessel conditions, agreed with measured yield pressure within 3–5%. Calculated yield pressure was found to be insensitive to the value of axial residual stress, since axial stress is the intermediate value in the Von Mises yield criterion. A description of yield pressure normalized by yield strength was given for autofrettaged A723 open-end pressure vessels over a range of wall ratio and degree of autofrettage, including effects of Bauschinger-modified residual stress. This description of yield pressure is proposed as a design procedure for cannons and other pressure vessels.

2003 ◽  
Vol 125 (1) ◽  
pp. 7-10 ◽  
Author(s):  
John H. Underwood ◽  
David B. Moak ◽  
Michael J. Audino ◽  
Anthony P. Parker

Yield pressure corresponding to a small permanent OD strain was measured in quasi-static laboratory tests of autofrettaged ASTM A723 steel cannon pressure vessels. Yield pressure was found to be a consistent ratio of the yield strength measured from specimens located in close proximity to the area of observed yielding. Yield pressure measurements for dynamic cannon firing with typically a 5-ms pressure pulse duration gave 14% higher yield pressures, attributed to strain rate effects on plastic deformation. Calculated Von Mises yield pressure for the laboratory test conditions, including the Bauschinger-modified ID residual stress and open-end vessel conditions, agreed with measured yield pressure within 3–5%. Calculated yield pressure was found to be insensitive to the value of axial residual stress, since axial stress is the intermediate value in the Von Mises yield criterion. A description of yield pressure normalized by yield strength was given for autofrettaged A723 open-end pressure vessels over a range of wall ratio and degree of autofrettage, including effects of Bauschinger-modified residual stress. This description of yield pressure is proposed as a design procedure for cannons and other pressure vessels.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


2003 ◽  
Vol 125 (3) ◽  
pp. 248-252 ◽  
Author(s):  
Joseph Perry ◽  
Jacob Aboudi

In the optimal design of a modern gun barrel, there are two main objectives to be achieved: increasing its strength-weight ratio and extending its fatigue life. This can be carried out by generating a residual stress field in the barrel wall, a process known as autofrettage. It is often necessary to machine the autofrettaged cylinder to its final configuration, an operation that will remove some of the desired residual stresses. In order to achieve a residual stress distribution which is as close as possible to the practical one, the following assumptions have been made in the present research on barrel analysis: A von Mises yield criterion, isotropic strain hardening in the plastic region in conjunction with the Prandtl-Reuss theory, pressure release taking into consideration the Bauschinger effect and plane stress conditions. The stresses are calculated incrementally by using the finite difference method, whereby the cylinder wall is divided into N-rings at a distance Δr apart. Machining is simulated by removing rings from both sides of the cylindrical surfaces bringing the cylinder to its final shape. After a theoretical development of the procedure and writing a suitable computer program, calculations were performed and a good correlation with the experimental results was found. The numerical results were also compared with other analytical and experimental solutions and a very good correlation in shape and magnitude has been obtained.


2014 ◽  
Vol 627 ◽  
pp. 141-144 ◽  
Author(s):  
Jan Poduška ◽  
Jaroslav Kučera ◽  
Pavel Hutař ◽  
Martin Ševčík ◽  
J. Křivánek ◽  
...  

As a result of the production process, there are axial and tangential residual stresses present in pressure pipes made of polymer materials such as polyethylene or polypropylene. The residual stress magnitude and distribution have a significant influence on the pipe lifetime. In this contribution the results from experiments focused on determining the tangential residual stress distribution in the walls of polypropylene pipes of different dimensions are compared. The experimental method used involves measuring the deformation of ring shaped specimens that were slit in the axial direction. Measured deformation of the ring specimen is a result of the tangential and axial stress superposition. However, the effect of the axial residual stress depends on the specimen axial dimension and tangential residual stress estimated basing on experimental data should be corrected according to axial dimension of the specimen used. The correction suggested in this article is determined based on three-dimensional FEM simulations of the experiment.


2005 ◽  
Vol 127 (3) ◽  
pp. 484-493 ◽  
Author(s):  
Robert Jackson ◽  
Itti Chusoipin ◽  
Itzhak Green

This work presents a finite element model (FEM) of the residual stresses and strains that are formed after an elastoplastic hemispherical contact is unloaded. The material is modeled as elastic perfectly plastic and follows the von Mises yield criterion. The FEM produces contours for the normalized axial and radial displacements as functions of the removed interference depth and location on the surface of the hemisphere. Contour plots of the von Mises stress and other stress components are also presented to show the formation of the residual stress distribution with increasing plastic deformation. This work shows that high residual von Mises stresses appear in the material pileup near the edge of the contact area after complete unloading. Values are defined for the minimum normalized interference, that when removed, results in plastic residual stresses. This work also defines an interference at which the maximum residual stress transitions from a location below the contact region and along the axis of symmetry to one near to the surface at the edge of the contact radius (within the pileup).


Author(s):  
Cameron Lonsdale ◽  
John Oliver

Railroad wheels are manufactured with beneficial residual compressive hoop stresses, which are imparted by rim quenching and tempering. Hoop and radial residual stresses for wheels have been studied in detail by various organizations over the years and are relatively well characterized. However axial residual stresses, in the orientation across the rim width from back rim face to front rim face, have not been extensively investigated. This paper describes a failure mode known as a vertical split rim (VSR) and describes efforts to measure the axial residual stresses in, 1) new wheels, 2) service worn wheels and 3) wheels that have failed from VSRs. Initial axial residual stress measurement efforts, using core drilling and x-ray diffraction from the tread surface, are briefly reviewed. Further more extensive work using x-ray diffraction to measure axial residual stress on radial wheel slices is described and data are presented, focusing on differences between the three wheel types. The concept of Axial Stress Amplification (ASA) is outlined, and the relationship of axial residual stress to VSRs is discussed. A proposed mechanism for VSR formation is described. Future work, with a goal of reducing or eliminating VSRs in service, is considered.


Author(s):  
Q. Ma ◽  
C. Levy ◽  
M. Perl

Our previous studies have shown that stress intensity factors (SIFs) are influenced considerably from the presence of the Bauschinger Effect (BE) in thick-walled pressurized cracked cylinders. For some types of pressure vessels, such as gun barrels, working in corrosive environment, in addition to acute temperature gradients and repetitive high-pressure impulses, erosions can be practically induced. Those erosions cause stress concentration at the bore, where cracks can readily initiate and propagate. In this study, The BE on the SIFs will be investigated for a crack emanating from an erosion’s deepest point in a multiply eroded autofrettaged, pressurized thick-walled cylinder. A commercial finite element package, ANSYS, was employed to perform this type of analysis. A two-dimensional model, analogous to the authors’ previous studies, has been adopted for this new investigation. Autofrettage with and without BE, based on von Mises yield criterion, is simulated by thermal loading and the SIFs are determined by the nodal displacement method. The SIFs are evaluated for a variety of relative crack lengths, a0/t = 0.01–0.45 emanating from the tip of the erosion of different geometries including (a) semi-circular erosions of relative depths of 1–10 percent of the cylinder’s wall thickness, t; (b) arc erosions for several dimensionless radii of curvature, r′/t = 0.05–0.4; and (c) semi-elliptical erosions with ellipticities of d/h = 0.5–1.5, and erosion span angle, α, from 6 deg to 360 deg. The effective SIFs for relatively short cracks are found to be increased by the presence of the erosion and further increased due to the BE, which may result in a significant decrease in the vessel’s fatigue life. Deep cracks are found to be almost unaffected by the erosion, but are considerably affected by BE.


2001 ◽  
Vol 124 (1) ◽  
pp. 103-108 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

A simple experimental technique is developed that allows the pressures and stresses predicted by EHL analyses to be checked. A soft, rough steel disc is run, under controlled conditions, against a harder, smooth counterface. The pressures generated cause the soft disc to plastically deform. Once deformation ceases the residual profile may be measured and used as input to an EHL solver. The calculated pressures are then used to determine the stress distributions as the rough surface passes through the conjunction. After allowing for the build up of residual stress the maximum von Mises’ stress should be equal to the yield strength of the disc. This provides an accurate, quantitative check on the theoretical values.


2013 ◽  
Vol 10 (1) ◽  
pp. 80 ◽  
Author(s):  
R Khan

 The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises) and anisotropic (Hill) yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions. 


2021 ◽  
Author(s):  
S. M. Kamal ◽  
Faruque Aziz

Abstract Rotational autofrettage is one of the recently proposed potential methods for eliminating the in-service yielding of thick-walled cylindrical pressure vessels. A few researchers have studied the feasibility of the process theoretically, and asserted certain advantages over the practicing hydraulic and swage autofrettage processes. In the literature, all theoretical analyses on the rotational autofrettage are based on the Tresca yield criterion and its associated flow rule, along with the assumption of different plane end conditions (plane strain and generalized plane strain). In this paper, an analysis of the rotational autofrettage of cylindrical vessel is attempted incorporating von Mises yield criterion. The plane strain condition is used for the analysis. A numerical shooting method is used to solve the governing differential equations providing the elastic-plastic stress distributions in the cylinder during loading. The present procedure is numerically experimented for a typical AH36 pressure vessel. It is found that the achievable level of the maximum stress pressure of the rotationally autofrettaged vessel is 74.46% higher than that of its non-autofrettaged counterpart for an overstrain level of 46.7%.


Sign in / Sign up

Export Citation Format

Share Document