Constraint Based Assessment of Postulated Nozzle Corner Cracks

Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Gerhard Nagel

Brittle failure for reactor pressure vessels (RPV) under loss of coolant accidents (LOCA) considering strip and plume cooling show the nozzle corner as leading region in load level (e.g. Siegele et al., 1999). For such transients postulated nozzle corner cracks are also leading in crack driving force compared to the fracture toughness of the material. On the other hand, the crack tip constraint and consequently the failure probability is reduced by yielding caused by high thermal stresses and in addition by the crack size being small relative to the bulk of the flange material. Under these conditions, the flaw assessment in the nozzle corner using fracture toughness data obtained on standard specimens with high constraint level is over-conservative. In this situation it is suitable to introduce the loss of crack tip constraint into the brittle failure analysis of the nozzle corner. This investigation focuses on the assessment of surface cracks in the nozzle corner of an RPV. Using the finite element method temperature and stress calculations are carried out for a postulated LOCA event. For crack postulates in the nozzle corner of various size and geometry in the nozzle corner, crack driving parameters (such as the J-integral and the stress intensity factor) are determined as functions of the crack tip temperature. To account for the crack tip constraint, the T-stress is then evaluated and used along with the master curve approach as suggested by Wallin (2001). Significant loss of constraint is found for the nozzle corner resulting in a large shift of the fracture toughness curve to lower temperatures, thus excluding initiation of the crack postulates.

Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Kim Wallin ◽  
Gerhard Nagel

Within the framework of the European research project VOCALIST, centre cracked tension, CC(T), specimens made of an RPV steel were tested and analysed to quantify the influence of local stress state on fracture toughness. The CC(T) specimens demonstrate a significant loss of crack tip constraint resulting in a considerable increase in fracture toughness as compared to standard fracture mechanics specimens. So, the master curve reference temperature, To, determined on the basis of CC(T) tests performed in this study is about 43°C lower than To obtained on standard C(T) specimens. Finite element analyses of the tests revealed that the above experimental finding is in a good agreement with the empirical correlations between the reference temperature shift and the crack tip constraint as characterised by the T-stress or Q parameter (Wallin, 2001; Wallin, 2004). The results of this work are consistent with a number of other tests performed within the VOCALIST project and contribute to the validation of engineering methods for the crack assessment in components taking account of constraint.


Author(s):  
J. F. Zarzour ◽  
Y. Dah-Wei ◽  
M. J. Kleinosky

Abstract Single edge notched bars (SENB), in the bending mode, with a/W ratios ranging from 0.05 to 0.5 were examined for fracture toughness in terms of the J-integral approach. The results indicate that for a/W ratios less than 0.3, there is a significant loss of J-dominance. This loss is attributed to the effect of plastic deformation on the cracked face. For a/W ratios greater than 0.3, J-dominance is maintained into the large scale yielding regime. According to the recently developed two-parameter criterion (J,Q), compressive Q-stress was interpreted as an indication of low crack-tip stress triaxiality for shallow cracks, while positive Q-stress was associated with high crack-tip stress triaxiality for deep cracks. For the material properties and specimen geometries considered herein, a fracture toughness locus was constructed in terms of the (J,Q) parameters for each of the a/W ratios. The overall fracture data are in agreement with those predicted by other approaches and provide a rigorous framework for interpreting the effect of loss of crack-tip constraint in elastic-plastic fracture analyses.


Author(s):  
Dieter Siegele ◽  
Igor Varfolomeev ◽  
Jo¨rg Hohe ◽  
Volker Hardenacke ◽  
Gerhard Nagel

The brittle failure assessment for five pressurized water reactor pressure vessels (RPV) of German nuclear power plants (NPP) has been revisited according to an advanced state of the art. Besides of recent innovation in fracture toughness curves and reference temperatures being already in the codes, also the effect of loss of constraint had to be considered when fracture toughness values determined from deep cracks in fracture toughness specimen with high multi-axial state of stress were transferred to crack configurations in the component. Thus, the available concepts were compared for their fitness for purpose, i.e. for their ability to give a fracture toughness representative to the crack configuration or flaw postulate in the component. The results of the investigation reveal a significant lower constraint in the component resulting in increased fracture toughness and showing that the brittle failure assessment based on the high constraint fracture toughness from the standard specimens can be very conservative. For consideration of the constraint conditions in the component besides the deterministic T-stress parameter also probabilistic local approach concepts based on the Weibull model were used which have the advantage of considering both the local stress strain field and the material volume under high loading. The loss of constraint was determined for several flaw postulates in the leading situations on the RPV being the coolant inlet nozzle corner and the flange joint. A considerable loss of constraint was demonstrated for flaw postulates with broken clad in the ferritic nozzle corner. Also in the flange joint the loss of constraint is evident for small flaws. In addition, for flaw postulates under the intact cladding the loss of constraint is remarkably higher than with broken postulated cladding. In summary, with the measured material toughness and the significant loss of constraint a considerable inherent margin against brittle failure can be demonstrated for the investigated load cases.


Author(s):  
P. James ◽  
M. Jackson ◽  
P. Birkett ◽  
C. Madew

Defect tolerance assessments are carried out to support the demonstration of structural integrity for high integrity components such as nuclear reactor pressure vessels. These assessments often consider surface-breaking defects and assess Stress Intensity Factors (SIFs) at both the surface and deepest points. This can be problematic when there is a high stress at the surface, for example due to the stress concentration at the root of a screw thread. In the past this has led to the development of complex and costly 3D finite element analyses to calculate more accurate SIFs, and still resulting in small apparent limiting defect sizes based on initiation at the surface point. Analysis has been carried out along with supporting materials testing, to demonstrate that the increased SIF at the surface point is offset by a reduction in crack-tip constraint, such that the material exhibits a higher apparent fracture toughness. This enables a more simplistic assessment which reduces the effective SIF at the surface such that only the SIF at the deepest point needs to be considered. This then leads to larger calculated limiting defect sizes. This in turn leads to a more robust demonstration of structural integrity, as the limiting defect sizes are consistent with the capability of non-destructive examination techniques. The high SIF at the surface location, and the concomitant reduction in crack-tip constraint, meant that it was not possible to demonstrate the material response with conventional tests, such as those using shallow-notched bend specimens. Instead it was necessary to develop modified specimens in which semielliptical defects were introduced into a geometry which replicated the notch acuity at the root of a screw thread. These feature tests were used to demonstrate the principle, prior to testing with more conventional specimens to fit more accurately the parameters required to represent the material response in a defect tolerance assessment. Margins in defect tolerance assessments are usually measured against the initiation of tearing, even though the final failure for the material may occur at a higher load following stable crack extension. This work measured and assessed the benefit of reduced crack-tip constraint on both the point of initiation and on the development of the tearing resistance curve. This demonstrated that the effect of constraint was valid with tearing for this material and that there was additional margin available beyond the onset of tearing. The feature test geometry also provided evidence of the tearing behaviour at the surface and deepest points of a surrogate component under representative loading. This paper provides an overview of the range of tests performed and the post-test interpretation performed in order to provide the R6 α and k constraint parameters.


2004 ◽  
Vol 126 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Chang-Ryul Pyo

One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy of predicting piping failure, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from C(T) specimen. It is shown that the J-resistance curve from the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed three-dimensional finite element analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.


2011 ◽  
Vol 197-198 ◽  
pp. 1595-1598 ◽  
Author(s):  
Jie Xu ◽  
Yu Fan

This paper studies the effects of temperature and crack tip constraint on cleavage fracture toughness of the weld thermal simulated X80 pipeline steels. A large number of fracture toughness (as denoted by CTOD) tests together with 3D finite element analysis are performed using single edge notched bending (SENB) and tension (SENT) specimens at different temperatures. Coarse-grained heat-affected zone (CGHAZ) is considered as the material microstructure in preparation of the weld thermal simulated fracture mechanics specimens.


Author(s):  
Zhongxian Wang ◽  
Yan-qing Zhang ◽  
Poh-Sang Lam ◽  
Yuh J. Chao

Typical pressure vessels are subject to biaxial loading. Creep analysis was conducted with two-dimensional finite element method for a center-cracked plate under a range of biaxial loading ratios (λ = −1, 0, and 0.5). The effects of crack size and the biaxial loading ratio on the crack tip field are reported. In addition, based on a two-parameter fracture theory, C(t)−A2(t), where C is a contour integral and is path-independent when the steady state creep is reached (denoted by C*), and A2 is a time dependent crack tip constraint parameter. The crack tip stress field calculated from the C(t)−A2(t) theory is shown to be more accurate than the Hutchinson–Rice–Rosengren (HRR) singularity solution, especially in the case of λ = 0.5. The loading level appears to have little effects on the constraint parameter A2(t). As creep time increases, the creep zone (based on the equivalent creep strain) increases rapidly but the yield zone (with respect to a reference stress) decreases. Meanwhile, the crack tip constraint is increasing with creep time, particularly for the small cracks. It was also found that the normalized relationship between the contour integral C(t)/C* and the creep time t/tT (where tT is the characteristic time for transition from small-scale creep to extensive creep) is insensitive to the biaxial loading. Therefore, the relationship previously provided for uniaxial loading can be used for biaxial loading.


Sign in / Sign up

Export Citation Format

Share Document